
Constructing Double- and Triple-erasure-correcting Codes with High 
Availability Using Mirroring and Parity Approaches* 

 
 

Gang Wang, Xiaoguang Liu, Sheng Lin, Guangjun Xie, Jing Liu 
Dept. of Computer, College of Information Technical Science, 

Nankai University, 300071, Tianjin, China 
wgzwp@163.com 

 
 

Abstract 
 

With the rapid progress of the capacity and slow 
pace of the speed/MTTF of hard disks, and increasing 
size of storage systems, the reliability and availability 
of storage systems become more and more serious. 
This paper discusses the method of constructing 
double- and triple-erasure-correcting codes via 
combining mirroring and parity approaches in details, 
and presents a double-erasure code MPDC and a 
triple-erasure code MPPDC based on one-
factorizations of complete graphs. The two codes are 
simple, easy to implement, and have no disk number 
limitation. They achieve perfect fault-free load balance 
and approximately optimal reconstruction load 
balance. The simulation results show that, compared 
with other double- and triple-erasure codes, MPDC 
and MPPDC have comparative light-load and 
moderate-load performance and better heavy-load 
performance in fault-free mode. Because parity 
declustering is used, the two codes are far superior to 
the other double- and triple-erasure codes in 
degraded- and reconstruction-mode performance. 
* 
1. Introduction 
 

Recently, there are some new tendencies in storage 
field: more and more storage systems are constructed 
through in virtue of network technology; the size of 
storage systems becomes much larger; and the size of 
elementary storage device improves quickly, but the 
performance and reliability improves very slowly. We 
can see easily the effects of these tendencies, higher 
component failure rate, higher unrecoverable read 
error rate, and longer recover time, consequently the 

                                                           
* This paper is partly supported by NSF of China (90612001), 
Science and Technology Development Plan of Tianjin, (043185111-
14), Nankai university R&D innovation fund and ISC. 

worse availability and reliability. So, current storage 
systems are in urgent need of multi-erasure-correcting 
codes. But unfortunately, although multi-erasure codes 
for storage applications have been studied for over two 
decades, none of known multi-erasure codes is as 
popular as mirroring and parity technologies. In this 
paper, we will present a double-erasure code MPDC 
(Mirroring Parity DeClustering) and a triple-erasure 
code MPPDC (Mirroring Parity-Parity DeClustering). 
They are based on mirroring and parity, so they are 
very simple and efficient. They lay over anything else 
of the kind in availability and reliability because of 
using parity declustering technology. 

The rest of the paper is organized as follow. In the 
next section we review the related works about multi-
erasure codes and parity declustering technology. In 
Section 3 we present the construction method of 
MPDC and MPPDC. The simulation results and 
analysis are given in Section 4. Finally, Section 5 
summarizes this study. 
 
2. Related work 
 

The multi-erasure codes studies can be described as: 
given n data disks which store user data, design a 
coding scheme which encodes the content on n data 
disks onto m coding disks to provide the ability that 
can recover any ≤t erasures. There are two trivial but 
effective schemes - replication and parity for n=1 and 
m=t=1 respectively. The former provides extremely 
high reliability and high performance, and the latter 
has optimal space efficiency and optimal access cost. 
But unfortunately, for t>1, and n>1, m>1, the known 
codes all have tradeoffs, and none of them is used as 
widely as the above two solutions [1]. 

Reed-Solomon code [2] is the only known MDS 
codes for arbitrary m (=t) and n up to now. But it’s 
based on finite field arithmetic. Although some 
optimizations have been developed [3], the 



encoding/decoding complexity is still a serious 
problem, especially for software implementation. RS 
code is used in RAID level 6 which is the most widely 
used multi-erasure code till now. 

The binary linear codes presented by Gibson et al [4] 
are XOR-based, so they have perfect 
encoding/decoding complexity. Bad storage efficiency 
is their inherent defect. Recently, the studies of LDPC 
codes for storage applications have emerged [5, 6]. It’s 
easy to see that LDPC codes are virtually irregular 
linear codes. The studies of LDPC codes focus on 
“average fault tolerance” instead of traditional 
“Hamming (threshold) fault tolerance”. This 
distinctive idea leads to good tradeoff between 
reliability and storage efficiency. 

Another category is so-called array codes, but we 
prefer thinking of them as data layouts of linear codes. 
EVENODD code [7] (and its generalization [8]) is the 
first MDS array code, perhaps also the most important 
one. Almost all the double- and triple-erasure array 
codes presented since then can be regarded as the 
varieties of EVENODD code and its generalization, 
such as X-Code [9], RDP code [10], STAR code [11], 
and so on. Poor flexibility is a big problem: all of these 
codes require prime size, and the code height is linear 
with the number of the disks. 

B-CODE [12] and BG-HEDP/Latin Code [13,14] 
are based on perfect one-factorizations of complete 
graphs and complete bipartite graphs (Hanmiltonian 
Latin Squares) respectively. They have alleviative size 
limitation. 

Most of the above codes seek for MDS or near-
MDS property. But MDS array codes definitely cause 
large group size [13] which perhaps induces poor 
performance in distributed storage systems. WEAVER 
Codes [15] act in an opposite way - its best storage 
efficiency is 50%! Just the high redundancy brings 
about low stripe group size and good localization 
which are helpful to the performance of distributed 
storage applications. But the construction of 
WEAVER codes is time-consuming. 

Besides lack of flexibility, the above works gave 
practice problems little thought. Parity declustering [16] 
is an effective technology for improving performance 
in fault mode. The key idea is to distribute the 
reconstruction load induced by the failed disks over all 
disks instead of the disks within the same parity group 
(the case in grouped RAID5/RAID6 arrays). Then, the 
per disk load increase ratio is (G-1)/(N-1) (where G is 
the size of parity groups and N is the size of the array), 
while it is 100% in grouped RAID5/RAID6 arrays! 
Many parity declustering data layouts have been 
developed since mid 1990s’, such as PRIME/RELPR 
[17], DATUM [18], PDDL [19], and so on. Most of 

their aims are single-erasure, and require prime size to 
achieve perfect reconstruction load balance. Combing 
Randomization and simulated annealing optimization 
[20] is suitable for any size, but can’t guarantee perfect 
reconstruction load balance and require an in-memory 
mapping table. 

Notably, although mirroring approach induces bad 
storage efficiency, two-way mirroring is used widely 
in many industries because of its advantage in 
performance and reliability. We combine mirroring, 
parity and parity declustering approaches to construct 
double-erasure code MPDC and triple-erasure code 
MPPDC which have high performance, high 
availability and high reliability. Today, the per MB 
cost of hard disk decreases quickly, the new codes are 
certainly affordable for the users who use two-way 
mirroring originally. 

Li et al studied several combinations of mirroring 
and parity [21], but they did only theoretic 
performance analysis, and hadn’t study any practical 
problems. Hsiao et al presented chained declustering to 
improve fault-mode performance in mirrored arrays 
[22], but their results are only partially parity 
declustering, and didn’t consider combining mirroring 
and parity approaches. Recently, Miller et al developed 
a large-scale storage system based on object-oriented 
storage targets, mirroring and hash technology [23]. 
Compared with this work, our solution is simpler and 
suitable for small and moderate storage applications. 

 
3. Design of MPDC and MPPDC 
 
3.1. Combine mirroring and parity approaches 
 

We add a parity disk to a RAID1+0 array (stripe of 
mirror pairs) then get a double-erasure code, we call it 
MP (Mirroring Parity). For describe convenience, we 
define some terms: the twin of a disk means its mirror 
disk, and vice versa; half failure denotes the case that 
a disk fails and its twin is ok; and pair failure denotes 
the case that a disk and its twin fail simultaneously. 
For MPDC and MPPDC, these terms are in terms of 
unit instead of disk. 

MP code can tolerate any double erasures certainly. 
Any half failures can be recovered by coping data 
between twins easily, and pair failures and parity disk 
failure can be recovered through XORing all surviving 
pairs (and the parity disk). MP is a non-MDS code, 2 is 
its Hamming fault tolerance, so it is able to recover 
many triple (or more) erasures except those contain a 
pair and the parity disk or two pairs. 

Based on a MP code, a triple-erasure code MPP 
(Mirroring Parity-Parity) can be constructed easily by 



adding a mirror disk for the parity disk. It is obviously 
a triple-erasure code. All triple-erasures are composed 
of three half failures or a pair failure and a half failure. 
The former can be recovered by twin-coping. And the 
latter can be recovered by XORing all surviving pairs 
and the “half-healthy” pair. Any t-erasure containing 
two pair failures will break the array. 

MP and MPP are actually particular cases of 2d-
parity code [4] and its extension respectively. But 
degenerating from parity to mirroring in one dimension 
brings qualitative change. Load sharing between twins 
will improve performance greatly. Moreover, mirrored 
arrays needn’t XOR operations when do updating, and 
then needn’t to read parity units and data units. Thus 
MP/MPP are superior to other double- and triple-
erasure codes in encoding/decoding/updating 
performance in terms of both computational 
complexity and the number of disk operations. 
 
3.2. Design of MPDC 
 

In view of the reconstruction load imbalance of MP 
and MPP, we think parity declustering. But the 
problem is more complex than those that the related 
works had faced. Most related works treated (grouped) 
RAID5 whose structure is one-dimension, the only 
failure type is single erasure, and the decoding method 
is unique. So the researchers only need to distribute 
independent parity stripes across all disks evenly. The 
reconstruction load balance will be achieved if each 
pair of disks participates in a fix number of stripes. 

But the structures of MP and MPP are two-
dimension, and there are several failure types in a 
MP/MPP array. We must optimize reconstruction load 
distribution not only for single-erasure mode but also 
for double-/triple-erasure mode. Maybe all possible 
recoverable erasures need to be considered in order to 
design “perfect” solutions. Moreover, various possible 
reconstruction methods for given single- or double-
/triple-erasures add extra difficulty. 

Fortunately, the twins can share load, this property 
simplifies the problem. We can get a good solution via 
one-factorizations of complete graphs. A factor of a 
graph G=(V, E) is a spanning subgraph of G and a one-
factor of G is a one-regular spanning subgraph of G. A 
factorization of G is a set of factors of G which are 
pairwise edge disjoint - no two have a common edge - 
whose union is G. A one-factorization (1F) of G is a 
factorization of G consisting of only one-factors. 
Formula 1 shows a construction method of 1Fs of even 
complete graph Kp+1. 

UU
2/)1(

1
)},{()},{(

−

=
+−=

p

j
i jijipiE   (1) 

All arithmetic operations in Formula 1 are mod p 
arithmetic. Ei is the edge set of the ith factor for 
0<=i<=p-1. Apparently, Formula 1 constructs the 
famous perfect one-factorization (P1F) family - GK 
[24]. A 1F F={F0, F1, …, Fk-1} is a P1F if for any 
distinct pair Fi, Fj of factors, Fi∪Fj induces a 
Hamiltonian cycle within G for 0≤i, j<k. GKp+1 is a 
perfect 1-factorization for all prime numbers p, but it is 
a 1-factorization for all integers p. 

We can let the vertices of KN denote the disks, and 
the edges denote the twin relationships. Then the 
problem is transformed into a graph factorization 
problem. Certainly, we still need to add parity units in, 
so using a 1-factorization of KN directly to construct a 
code with N disks is not feasible. We can do a 
transformation on GK2N+2 to produce a MDPC code 
with 2N+1 disks for all integers N. The algorithm is 
described as follow: 
Algorithm 1 MPDC codes construction algorithm 
Input: GK2N+2 = {F0, F1, …, F2N+1} 
Output: A MPDC code with 2N+1 disks 
Method: 
1. Rearrange GK2N+2, let Fi contains edges (2N-i, 

2N+1) for 0≤i≤2N. 
2. Let vertex i of K2N+2 denote the ith disk of the 

array for 0≤i≤2N, and vertex 2N+1 be “parity 
vertex”. 

3. Construct the ith rows of the code via Fi for 
0≤i≤2N: for each edge (u, v) (0≤u, v≤2N) of Fi, 
place a data unit on disk u, and place its twin on 
disk v; place the parity unit on disk 2N-i. 

Figure 1 shows the construction of the MPDC code 
with 7 disks. Where Di denotes the ith data units, Mi 
denotes the twin unit of Di, and Pi denotes the parity 
unit of the ith row (stripe). 

It is easy to see that because the parity unit is 
distributed evenly and each pair of disks contains 
exactly one unit twins, the fault-free mode load is 
distributed evenly in a MPDC array. The 
reconstruction load is not distributed absolutely evenly, 
but the distribution is near-optimal. 

When a single-erasure occurs, the lost data units on 
the failed disk can be recovered by coping exactly one 
data unit from each surviving disk, and the lost parity 
unit can be recovered by reading all surviving unit 
twins at the same row. Obviously, the reconstruction of 
the lost parity unit involves only half of the surviving 
disks. But notably, the layout showed in Figure 1 is 
just a “period” which will be filled into disk arrays 
repeatedly. Thus the twins can share the reconstruction 
load caused by the lost parity units. Moreover, the 



array still bear user load in fault mode, thus 
(approximate) load balance is achieved naturally. 

Now let’s consider double-erasure mode. We need 
recover a pair failure, two parity failure and 4N-2 
single failures. It is easy to calculate that there are two 
cases: in order to recover a period on the two failed 
disks, 4 units must be read from a surviving disk, 3 
units from other two disks, and 3.5 from the others; or 
3 units from a surviving disk, and 3.5 from the others. 
However, the reconstruction load carried by each disk 
is close. If the user workload is taken into 
consideration, load balance can be achieved. 
Obviously, MPDC improves fault-mode performance 
greatly compared with RAID6 and MP. Its per-disk 
reconstruction load is fixed against the array size. And 
the larger the disk array, the more superiority is MPDC 
to other codes. 

 
Figure 1. Constructing MPDC code with 7 disks 
 
3.3. Design of MPPDC 
 

We hope to construct triple-erasure parity 
declustering codes MPPDC based on MPP codes 
through a method like algorithm 1. But it is difficult to 
achieve the four objectives: distributing parity units 
evenly, and distributing single-/double-/triple-erasure 
reconstruction load evenly. So we relax the metrics of 
perfect parity declustering data layouts, and let twins 
adjust the load distribution adaptively. The algorithm 2 
describes the construction steps of a MPPDC code 
with 2N+2 disks via GK2N+2. 
Algorithm 2 MPPDC codes construction algorithm 
Input: GK2N+2 = {F0, F1, …, F2N+1} 
Output: A MPDC code with 2N+2 disks 
Method: 
1. Rearrange GK2N+2, let Fi contains edges (2N-i, 

2N+1) for 0≤i≤2N. 

2. Let vertex i of K2N+2 denote the ith disk of the 
array for 0≤i≤2N+1. 

3. Construct the ith rows of the code via Fi for 
0≤i≤2N: place the parity twins on disk (2N-i-1) 
and disk (2N-i+1), and for each edge (u, v) (0≤u, 
v≤2N) of Fi except (2N-i-1, 2N-i+1), place a data 
unit on disk u, and place its twin on disk v. (all 
arithmetic operations are mod (2N+1) arithmetic) 

Our basic way is that constructing the codes based 
on GK2N+2, selecting one edge from each 1-factor (row) 
of GK2N+2, and letting the adjacent vertices of the edges 
be the disks which hold the parity units. In order to get 
perfect parity load distribution, we must design an 
edge selection scheme which satisfies that the selected 
N+1 edges from any N+1 consecutive factors just 
cover all vertices - each disk contains exactly one 
parity units. If for any GK2N+2, there exists a 1-factor F 
of K2N+2 which satisfies that the intersection of F and 
each factor of GK2N+2 is exactly one edge, the problem 
will fade out. In graph theory, a rainbow 1-factor is a 
1-factor with the property that no two edges of it are in 
the same 1-factor of a 1-factorization. Graph theorists 
have proven that given any 1-factorization, there exists 
a rainbow [24]. But unfortunately, the property of 
rainbow is slightly different from our requirement. In 
fact, since the size of GK2N+2 is 2N+1 and the size of a 
1-factor of K2N+2 is N+1, it is almost impossible to 
design a perfect solution. Remarkably, we have only 
discussed the first objective. The scheme which can 
solve all the four objectives perfectly seems an 
unachievable goal. 

 
Figure 2. MPPDC code with 8 disks 

So we select a near-optimal but relative simple 
method as algorithm 2 described. The main idea is that 
let the two adjacent vertices of the second edge of Fi 
store the parity twins at the ith row. Figure 2 shows a 
MPPDC code with 8 disks, where PMi denotes the 
twin of the parity units at the ith row. Obviously, the 
parity units are distributed evenly neither globally nor 
locally. Especially disk 2N+1 contains no parity units. 
But it can share the load on any other disk, thus the 
fault-free load balance can be achieved. 

When any single-erasure occurs, the reconstruction 
of one period of the failed disk reads exactly one unit 
from each surviving disk. When any double-erasure 



occurs, 2.5 units must be read from each surviving disk 
during recover one period. 

As for triple-erasures, the lost units compose three 
pair failures and 6N-3 half failures. We can prove that 
4 units must be read from three surviving disks and 4.5 
units from the other surviving disks in order to recover 
a triple-erasure. 
 
4. Performance evaluation 
 
4.1. Performance metrics analysis 
 

Gibson et al presented 5 metrics for multi-erasure 
coding schemes: reliability, check disk overhead, 
update penalty, group size and extensibility. We will 
compare MPDC/MPPDC with other coding schemes at 
these aspects. In this subsection, N denotes array size. 

MP/MPP are particular cases of 2d-parity codes, 
therefore their fault tolerance are not confined to 2/3, 
they can recover all 3-/4-erasures except bad 3-/4-
erasures [4]. Though parity declustering is applied, 
MPDC/MPPDC retain the high fault tolerance. Of 
course, the definition of “bad” is different. In MP 
arrays, bad 3-erasures are 3-erasures composed of a 
data, its twin and the parity. And in MPP arrays, bad 4-
erasures are 4-erasures composed of two twins. 

In MPDC arrays, we use a triple (i, j, k) denote a 3-
erasure - i, j and k are the serial numbers of the failed 
disks. According to algorithm 1, we call (i, j, k) bad if 
it satisfies one of the following equations: (1) i + j ≡ 2k 
mod N; (2) i + k ≡ 2j mod N; (3) k + j ≡ 2i mod N. 

It is easy to see that we can get all bad 3-erasures by 
applying equation 1 to each pair of serial numbers. 
Thus, there are 2/)1( −NN  bad (unrecoverable) 3-
erasures in total 6/)2)(1( −− NNN  3-erasures. But 
when N ≡ 0 mod 3, there are 3/N  triples satisfy the 
three equations simultaneously, namely they are 
calculated three times. So the number of bad 3-erasures 
is 3/2-2/)1( NNN − . Then the unrecoverable 3-
erasure rate of MPDC is )/1(O N , while the rate of MP 
(the best in 2d-parity) is )/1(O 2N . Apparently, MPDC 
is inferior to MP. But the recoverable rates of them are 
asymptotically identical. Similarly, we can prove that 
the unrecoverable 4-erasure rate of MPPDC is )/1(O N , 
while the rate of MPP is )/1(O 2N . As for MTTDL 
(Mean Time To Data Loss), we have developed a 
simulator which is more precise than Markov model 
method. The simulation results show that the MTTDL 
of MPDC/MPPDC is better than RAID6 because of 
their better average fault tolerance, and is better than 
MP/MPP because of shorter reconstruction time (see 

subsection 4.2). The results are not showed in this 
paper for lack of space. 

Storage efficiency is the main drawback of 
MPDC/MPPDC. But their efficiency is close to two-
way mirroring unless N is very small. Moreover, as 
described above, the capacity of hard disk increases 
dramatically and price decreases dramatically today, so 
the not good check disk overhead is not a fatal flaw. 

MPDC/MPPDC are far superior to other codes in 
encoding/decoding/updating complexity. We use the 
number of per data unit XOR operations to evaluate 
encoding performance fairly. The values of this 
criterion in MPDC/MPPDC arrays are )1/(21 −− N  
and )2/(21 −− N  respectively, while RDP is 

)2/(22 −− N , EVENODD is )3/(12 −− N , 2d-parity 
is about N/22 − , and STAR Code is 

)4)(3/(1)4/(13 −−−−− NNN . That is to say that in 
order to do encoding, MPDC only need to do half of 
what the other 2-erasure codes do and MPPDC only 
need to do one-third of what the other 3-erasure codes 
do. Decoding/updating cases are similar. The reason is 
simple - mirroring needn’t to do XOR operations. 

Mirroring also benefits the update penalty in terms 
of the number of disk operations. The update penalties 
of MPDC and MPPDC are 5 and 6 respectively, while 
the update penalties of typical 2- and 3-erasure codes 
are 6 and 8 respectively. The advantage of MPDC and 
MPPDC is evident. 

MPDC and MPPDC also have good parity group 
size. Though the size of the biggest parity group is 
about N/2, the twins have extreme small group size - 2, 
therefore the average group size is about 3. MPDC and 
MPPDC are comparable to WEAVER CODE at this 
aspect. In fact, Gibson et al hope to evaluate fault 
mode performance through this criterion - small group 
size means little impact on arrays during reconstruction. 
Obviously, per disk load increase rate during 
reconstruction is a better criterion. As described in 
subsection 3.2 and 3.3, MPDC and MPPDC are far 
superior to the other codes at this aspect. 
 
4.2. Simulation 
 

In order to compare the performance of MPDC and 
MPPDC with other 2- and 3-erasure codes precisely, 
we did simulation. The simulation platform is modified 
DiskSim [25]. The disk model is DEC DZ26. Unless 
otherwise noted, the array size is 14 (2*7 for grouped 
RAID6, and 13 for MP and MPDC), the stripe unit 
size is 8KB, the workload is synthetic, the request size 
and alignment are all 8KB, the request distribution is 
uniform, the request type is 80% read and 20% write, 



the request inter-arrival time distribution is exponential, 
and the generator works in non time-critical, non time-
limited mode. All the simulations are repeated 5 times 
and the results showed in this paper are all average. 
We test six kinds of codes: RAID6, grouped RAID6, 
MP, MPP, MPDC and MPPDC. The simulations 
evaluate not CPU performance but disk performance, 
thus RAID6 can represent (near) MDS horizontal 
codes such as EVENODD, RDP and so on because 
their disk operation models are identical. Similarly, 
MP and MPP can represent binary linear codes. 

Figure 3 plots the average user response time vs. the 
achieved user I/O operations per second when each 
array is fault-free. MP and MPP have the worst load 
capacity because of extremely uneven parity 
distribution. Other codes have almost the same load 
capacity. Under moderate and heavy workloads, the 
advantage of mirroring emerges. The response time of 
MPDC and MPPDC is only about 60% ~ 67% of 
RAID 6 and grouped RAID6. 

Figure 4 shows the single-erasure mode 
performance. It is easy to see the advantage of parity 
declustering. MPDC and MPPDC have almost no load 
capacity degradation, while RAID6 and grouped 
RAID6 have about 40% and 35% degradation 
respectively. MPDC and MPPDC are also superior in 
response time degradation. And the response time gap 
between the two kinds of codes becomes wider 
compared with fault-free mode. Figure 5 and Figure 6 
show the double-erasure mode performance and triple-
erasure mode performance respectively. “FailP” means 
that there is a pair failure in a MP/MPP array. It is easy 
to see that the general trends are similar to single-
erasure mode. And the performance gap between 
MPDC/MPPDC and RAID6/gRAID6 becomes wider 
as the number of failed disks climbs. Namely, 
MPDC/MPPDC have better “erasure scalability”. 

We have also tested the performance under 
reconstruction-mode. We cannot list all the results in 
this paper for lack of space. Only the double-erasure 
reconstruction time is showed in Figure 7. It is easy to 
see that MPDC and MPPDC are also superior to other 
codes in reconstruction time. This advantage will bring 
better MTTDL. Unlisted results are similar to Figure 3 
- Figure 7 in the view of performance comparison. 

In order to compare the scalability of the codes, we 
did the above simulations for some bigger arrays 
which have 28, 42 and 56 disks respectively. Certainly, 
the sizes of MPDC arrays are 27, 41 and 55. The parity 
group sizes of grouped RAID6 arrays are fixed to 7 in 
favor of their performance. We only show the response 
time of grouped RAID6, MPDC and MPPDC under 
fault-free mode, single-erasure mode and double-
erasure mode in Figure 8 - Figure 10 for lack of space. 

The suffixes “f1” and “f2” denote single- and double- 
erasure respectively. Obviously, as the size increases, 
the MPDC/MPPDC arrays retain little performance 
degradation when failures occur. And the performance 
gap between MPDC/MPPDC and grouped RAID6 
becomes wider as the array size increases. Certainly, 
the performance gap between MPDC and MPPDC also 
becomes wider slowly because the former has better 
update penalty and better load balance. In a word, 
MPDC/MPPDC win again. 
 
5. Conclusions and future works 
 

In this paper, we developed a double-erasure code 
MPDC and a triple-erasure code MPPDC based on 
one-factorizations of complete graphs using mirroring 
and parity approaches and parity declustering 
technology. The theoretical analysis and simulation 
results show that their fault-free performance is far 
higher than MP and MPP, and is superior to RAID6 
and grouped RAID6 at heavy workloads. Their 
degraded- and reconstruction-mode performance is 
close to their fault-free mode, and is far superior to 
other codes. Their storage efficiency is close to RAID1, 
but they provide double- and triple-erasure-correcting 
ability with excellent availability and reliability. Their 
coding/decoding/updating complexity is also better 
than that of other 2- and 3-erasure codes. Moreover, 
they have no limit in the number of disks. 

The future works will focus on the implementation 
of MPDC and MPPDC, and performance evaluation 
via the workloads close to real world workloads (such 
as TPC-C, TPC-W, and so on). We also plan to 
construct MPDC and MPPDC via other one-
factorizations of KN instead of GKN. There are 396 
nonisomorphic one-factorizations of K10, and the 
number is 526,915,620 for K12 [24]! This good variety 
will be helpful to performance optimization. In 
addition, we may optimize fault-mode performance via 
distributed spare technology. 
 
References 
 
[1]   J. S. Plank, “Erasure Codes for Storage Applications”, 

Tutorial of the 4th Usenix Conference on File and 
Storage Technologies, San Francisco, CA, Dec, 2005. 

[2]   J. S. Plank, “A Tutorial on Reed-Solomon Coding for 
Fault-Tolerance in RAID-like Systems”, Software - 
Practice & Experience, Vol. 27, No.9, Sep, 1997, 
pp.995-1012. 

[3]   J. S. Plank and Lihao Xu, “Optimizing Cauchy Reed-
Solomon Codes for Fault-Tolerant Network Storage 
Applications”, In Proceedings of the 5th IEEE 



International Symposium on Network Computing and 
Applications, Cambridge, MA, Jul, 2006, pp.173-180. 

[4]   Lisa Hellerstein, Garth A. Gibson, Richard M. Karp, 
Randy H. Katz and David A. Patterson, “Coding 
techniques for handling failures in large disk arrays”, 
Algorithmica, Vol. 12, No. 2/3, Aug,1994, pp.182-208. 

[5]   M. G. Luby, M. Mitzenmacher, A. Shokrollahi, D. 
Spielman and V. Stemann, “Practical Loss-Resilient 
Codes”, In Proceedings of the 29th Annual ACM 
Symposium on Theory of Computing, El Paso, Texas, 
May, 1997, pp.150-159. 

[6]   J. S. Plank and M. G. Thomason. “A practical analysis 
of low-density parity-check erasure codes for wide-
area storage applications”, In Proceedings of the 
International Conference on Dependable Systems and 
Networks, Florence, Italy, Jun, 2004, pp.115–124,. 

[7]   M. Blaum, J. Brady, J. Bruck, J. Menon, “EVENODD: 
an efficient scheme for tolerating double disk failures 
in RAID architectures”, IEEE Trans. on Computers, 
Vol. 44, No. 2, pp. Feb, 1995, 192-202. 

[8]   M. Blaum, J. Bruck, and A. Vardy, “MDS array codes 
with independent parity symbols”, IEEE Trans. on 
Information Theory, Vol. 42, No. 2, Mar, 1996, pp. 
529-542. 

[9]   L. Xu and J. Bruck, “X-Code: MDS Array Codes with 
Optimal Encoding”, IEEE Trans. on Information 
Theory, Vol. 45, No. 1, Jan, 1999, pp.272-276. 

[10]   P. Corbett, B. English, A. Goel, T. Grcanac, S. 
Kleiman, J. Leong and S. Sankar, “Row-Diagonal 
Parity for Double Disk Failure Correction”, In 
Proceedings of the 3th USENIX Conference on File 
and Storage Technologies, San Francisco, CA, USA, 
Mar, 2004, pp.1-14. 

[11]   Cheng Huang, Lihao Xu, “STAR: An Efficient Coding 
Scheme for Correcting Triple Storage Node Failures”, 
In Proceedings of the 4th USENIX Conference on File 
and Storage Technologies, San Francisco, Dec, 2005, 
pp.197-210. 

[12]   L. Xu, V. Bohossian, J. Bruck, and D.G. Wagner, 
“Low-Density MDS Codes and Factors of Complete 
Graphs”, IEEE Trans. on Information Theory, Vol. 45, 
No. 6, Sep, 1999, pp.1817-1826. 

[13]   Wang Gang, Dong Sha-sha, Liu Xiao-guang, Lin 
Sheng, Liu Jing, “Construct double-erasure-correcting 
Data Layout Using P1F”, ACTA ELECTRONICA 
SINICA, Vol. 34, No. 12A, 2006, pp.2447-2450. 

[14]   Gang Wang, Sheng Lin, Xiaoguang Liu, Guangjun Xie, 
Jing Liu, “Combinatorial Constructions of Multi-
Erasure-Correcting Codes with Independent Parity 
Symbols for Storage Systems”, (to appear) IEEE 
PRDC 2007, Melbourne, Victoria, Austrilia, Dec, 2007. 

[15]   J. L. Hafner, “WEAVER Codes: Highly Fault Tolerant 
Erasure Codes for Storage Systems”, In Proceedings of 

the 4th Usenix Conference on File and Storage 
Technologies, San Francisco, Dec, 2005, pp.211-224. 

[16]   M. Holland, G. A. Gibson, D. P. Sieworuk, 
“Architectures and Algorithms for On-Line Failure 
Recovery in Redundant Disk Arrays”, Journal of 
Parallel and Distributed Databases, Vol. 2, No. 3, Jul, 
1994, pp.295-335. 

[17]   G. A. Alvarez, W. A. Burkhard, L. J. Stockmeyer, F. 
Cristian, “Declustered Disk Array Architectures with 
Optimal and Near-Optimal Parallelism”, ACM 
SIGARCH Computer Architecture, Vol. 26, No. 3, Jun, 
1998, pp.109-120. 

[18]   G. A. Alvarez, W. A. Burkhard, F. Cristian, 
“Tolerating Multiple Failures in RAID Architectures 
with Optimal Storage and Uniform Declustering”, In 
Proceedings of the 24th Annual ACM/IEEE 
International Symposium on Computer Architecture, 
Denver, Colorado, United States, Jun, 1997, pp.62-72. 

[19]   T. J. E. Schwarz, J. Steinberg, W. A. Burkhard, 
“Permutation Development Data Layout (PDDL) Disk 
Array Declustering”, In Proceedings of the 5th 
International Symposium on High-Performance 
Computer Architecture, Orlando, FL, USA, Jan, 1999, 
pp.214-217. 

[20]   Eric J. Schwabe, Ian M. Sutherland, Bruce K. Holmer, 
“Evaluating Approximately Balanced Parity-
Declustered Data Layouts for Disk Arrays”, Parallel 
Computing, Vol. 23, No. 4-5, Jun, 1997, pp.501-523. 

[21]   C. S. Li, M. S. Chen, P. S. Yu and H. I. Hsiao, 
“Combining Replication and Parity Approaches for 
Fault-Tolerant Disk Arrays”, In Proceedings of the 6th 
IEEE Symp. on Parallel and Distributed Processing, 
Arlington, USA, Oct. 1994, pp.360-367. 

[22]   H. I. Hsiao and D. J. DeWitt, “A Performance Study of 
Three High-Availability Data Replication Strategies”, 
In Proceedings of the International Conference on 
Parallel and Distributed Information Systems, Miami, 
Florida, USA, 1991, pp.18-29. 

[23]   Sage A. Weil, Scott A. Brandt, Ethan L. Miller, Darrell 
D. E. Long, and Carlos Maltzahn, “Ceph: A Scalable, 
High-Performance Distributed File System”, In 
Proceedings of the 7th  Conference on Operating 
Systems Design and Implementation, Seattle, WA, Nov, 
2006, pp.307-320. 

[24]   Charles. J. Colbourn, Jeffrey H. Dinitz, et al, 
“Handbook of Combinatorial Designs (Second 
Edition)”, CRC Press, 2007. 

[25]   J. S. Bucy, G. R. Ganger, “The DiskSim Simulation 
Environment Version 3.0 Reference Manual”, 
Technical Report CMU-CS-03-102, Carnegie Mellon 
University, 2003. 



 
Figure 3. Fault-free mode performance 

 
Figure 4. Single-erasure mode performance 

 

Figure 5. Double-erasure mode performance 

 

Figure 6. Triple-erasure mode performance 

 
Figure 7. Double-erasure reconstruction time 

 
Figure 8. Performance of arrays with 28 disks 

 
Figure 9. Performance of arrays with 42 disks 

 
Figure 10. Performance of arrays with 56 disks 


