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ABSTRACT

Cloud computing has become one of the hottest topics in
both academia and industry. In cloud computing, virtu-
alization is the fundamental technology, and the resource
management is the key issue. Storage, an important re-
source, traditionally is allocated to users according to users’
predictions, so may cause bad space utilization because of
overprovisioning or underprovisioning. Dynamic adjusting
is difficult because of the fixed address mapping used in
the traditional storage systems. In this paper, we present
an Allocation-On-Demand Incremental (AoDI) volume. It
uses an appending rather than overwriting strategy to deal
with the write requests. So we can obtain accurate stor-
age space usage easily. Accompany with an automatic vol-
ume extension technique, AoDI can allocate storage space al-
ways matching users’ real-time requirement, so avoids space
waste. Based on appending strategy, we also design a Non-
COW (Non Copy On Write) snapshot that is dramatically
faster than traditional COW snapshots. Since snapshot is a
frequent operation in cloud or virtualization systems, Non-
COW snapshot can improve overall performance effectively.
Another advantage of AoDI is translating random requests
into sequential requests that obviously can speed up random
access. We implement AoDI based on LVM (Logical Volume
Manager) in Linux platform. Our experimental results show
the great performance advantage of AoDI in snapshot and
random access.
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1. INTRODUCTION
Cloud computing [4] refers to both the applications de-

livered as services over the Internet and the hardware and
systems software that provide those services. Cloud users
only pay for the services they are using, and need not be
concerned about overprovisioning for a service that causes
wasting costly resources, or underprovisioning for one that
can not meet the requirements. Virtualization [8] is one
of the key techniques to build cloud. Using virtualization,
all resources are shared actually, but the virtual machines
give cloud users the illusion of possessing private resources.
Accordingly, resources management is a challenge to both
virtualization and cloud computing [3].

How to improve both storage utilization and its perfor-
mance must be considered to cloud provider. In traditional
storage management, storage resources are allocated to users
as their private resources. Overprovisioning or underprovi-
sioning often happens that will cause resource wasting or
refusing service in cloud computing when many users re-
quire services simultaneously. This situation is caused by the
static allocation in traditional storage management [9]. The
motivation of this paper is to implement an Allocation-On-
Demand Incremental (AoDI) volume management, which
can allocate storage resources according to users’ real time
requirements rather than one-off strategy.

The main ideas of AoDI are concluded as follows,

∙ Separating the user-oriented visible volume and system-
oriented physical volumes by using double-level vol-
umes structure. From user’s view, they have the illu-
sion of possessing enough storage resources. In fact,
the physical storage space will only be allocated when
users need them really.

∙ Appending rather than overwriting strategy is used to
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deal with the write requests. Appending strategy both
improves performance by converting random write re-
quests into continuous write requests, and makes accu-
rate estimation of storage space usage availably. Using
automatic extension, AoDI can allocate storage space
always meeting users’ real-time requirements, which
can avoid space wasting.

∙ Non-COW (Non Copy On Write), a zero copy snap-
shot accompany with AoDI, has dramatically better
performance than traditional COW snapshots. Since
snapshot is a frequent operation in cloud or virtual-
ization systems [5], Non-COW snapshot can improve
overall performance effectively.

We implement AoDI based on LVM (Logical Volume Man-
ager) in Linux platform. Our experimental results show the
great performance advantage of AoDI in snapshot and ran-
dom access.

2. RELATED WORK
How to allocate resources effectively is a classic problem

to system designer. Andrzejak et al. [3] found up to 50%
savings could be obtained by dynamically redistributing re-
sources among applications in utility computing. Dynamic
memory allocation algorithms have also been applied in the
VMWare ESX server [12]. This algorithm estimates the
working set sizes of each virtual machine and periodically
adjusts memory allocated to each virtual machine such that
performance goals are met. Multi-resource partition [6] is an
idea that multiple resources are partitioned to provide isola-
tion and QoS for several competing applications. Wachs et
al. [11] show the benefit of considering both cache allocation
and disk bandwidth allocation to improve the performance
in shared storage servers. Padala et al. [9] study methods
to allocate memory and CPU to several virtual machines lo-
cated within the same physical server. AoDI is mainly to
solve the problem of dynamic allocation on storage resource
at LVM level, and it is transparent to users.

Snapshot provides the ability to record the state of a stor-
age device at any given moment. In Linux, LVM2 [2] adopts
Copy-On-Write (COW) to maintain snapshot data. COW [10]
is space efficient, because the snapshot volume only stores
the original version of modified data after snapshot creation.
The original volume can provide other snapshot data. How-
ever, COW impacts write performance, because write re-
quests to the original volume must wait until original data is
copied to the snapshot. In Parallax [13] [7], radix tree is used
to maintains the dynamic mapping between virtual address
space and physical address space. So COW operations are
avoided. However, a snapshot inherits its original volume’s
mapping table lazily. That is, Parallax converts data COW
to metadata COW. In this paper, in order to avoid COW
completely, we develop a new Non-COW approach based on
AoDI, which do not need copy both data and metadata dur-
ing snapshot operations.

3. THE DESIGN OF AoDI

3.1 Fundamental Concepts
In order to achieve on-demand storage allocation, we need

to get accurate estimation of storage utilization and have
ability to adjust the physical size of the volume dynamically.
Therefore, AoDI adopts the following strategies:

Super Chunk Data ChunkMetadata Chunk

Garbage Bitmap Chunkmap Group

chunkmap0 chunkmap1 ... chunkmap15

Figure 1: AoDI Disk Layout.

∙ Double-level volume structure. AoDI separates the
user-oriented visible volume and system-oriented phys-
ical volume. So it can allocate physical space accord-
ing to user’s real-time requirement such that storage
resource is used effectively.

∙ Appending strategy, used in AoDI, not only makes
it easy to obtain accurate utilization ratio, but also
converts logically random write requests into physi-
cally continuous disk write operations. Accordingly,
address mapping between visible volume and physi-
cal volume must be maintained (see Section 3.2 and
3.3). A set of new read/write algorithms for this dy-
namic address mapping are designed (see Section 3.4).
Since appending strategy is used, multiple versions of
the same data block may simultaneously exist in the
volume. A defragmentation mechanism is designed to
collect garbage space produced by old versions (see Sec-
tion 3.5).

∙ Automatic extension mechanism. An automatic phys-
ical volume extension algorithm preventing physical
space overflow, and a visible volume extension algo-
rithm for the growth of users’ requirement to storage
are designed (see Section 3.6).

3.2 Disk Layout
To achieve the goal mentioned in Section 3.1, a new disk

layout different from LVM volume is designed for AoDI (as
shown in Figure 1). It consists of three parts: the super

chunk, the metadata chunks and the data chunks. Here, the
chunk size is 4KB.

The super chunk just likes the one in EXT2 file system.
It records the global information of AoDI volumes, such as
the device number of the volume, the number of snapshots
and the start physical chunk number of each snapshot.

The metadata chunks consists of garbage bitmap and chun-
kmap group. Chunkmaps record the mapping tables be-
tween visible and physical volumes. The i-th entry in a
mapping table records the physical chunk number accom-
modating the i-th logical chunk, so the size of each mapping
table is proportional to the visible volume size. Moreover,
every chunkmap holds one version of metadata at a snap-
shot point in time (see Section 3.7). As its name suggests,
garbage bitmap takes charge of defragmentation. A set bit
means that the corresponding physical chunk is a garbage.

The data chunks are used to store the users’ data. New
data is stored into first unused chunk sequentially.

3.3 Metadata Organization And Cache Replace-
ment
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Figure 2: Metadata Organization And Cache Re-
placement.
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Figure 3: AoDI Write Strategy.

For the purpose of consistency, we must keep some disk
space to contain the metadata (see the metadata chunks in
Section 3.2). Moreover, since the mapping table of a very
large volume may not fit into the main memory completely,
we use cache mechanism to accelerate metadata access.

The cache is organized using hash technique as Figure 2
shown. Each hash bucket holds a linked list of metadata
page. Each metadata page has a unique number that desig-
nates its bucket through Formula 1.

bucket number = metadata page number mod 4096 (1)

The metadata on disk is organized as a train of chunks in
chunkmap. The metadata page size in memory is set to
equal to the chunk size on disk. Moreover, FIFO is used as
the cache replacement strategy. When a cache miss occurs,
the oldest metadata page will be written back to the disk if
there are no free space in the cache, and the metadata chunk
containing the required mapping entry will be read from disk
to cache.

3.4 Read And Write Strategy
As mentioned in 3.1, AoDI adopts appending strategy to

deal with write requests. That is, when an update request ar-
rives, the new data will be stored in the first free data chunk
rather than overwriting the old version. Since random write
requests are converted into sequential disk write operations,
appending strategy dramatically reduces seek time that is
the largest cost of disk operations.

Comparison between write strategy used in LVM and AoDI
is shown in Figure 3.

LVM uses the traditional overwriting strategy. As shown
in Figure 3, suppose that chunk1 and chunk2 contain A and

B initially. If they are modified, LVM first seek to the sectors
storing chunk1 and chunk2, and then write the new contents
(as shown by solid arrows). By contrast, AoDI just appends
the new contents after the last used sector (as shown by
broken arrows). Since a dynamic instead of the traditional
fixed mapping from user address space to physical address
space is used, we must maintain a mapping table, chunkmap
for each volume as described in the last subsection. So read
and write algorithms must deal with mapping table lookup
and update. If a cache missing happened, the metadata
replacement will take place. In the write algorithm, before
updating, we need to check whether the chunk has an old
version. If the old version exists, we need to mark the chunk
as a garbage chunk. Moreover, in the read algorithm, if the
chunk has not been written, it will end this I/O operation
directly.

3.5 Defragmentation
As mentioned in Section 3.1, AoDI performs write requests

using appending strategy rather than overwriting strategy.
It means multiple versions of the same logical chunk may
simultaneously be stored in different physical chunks. There-
fore, physical chunks occupied by old versions become garbage
chunks. We need a defragment/garbage collection mecha-
nism to deal with them. Otherwise, garbage chunks will ex-
haust physical space gradually and fragments will also hurt
reading performance greatly.

To ensure data consistency, our defragmentation algorithm
updates the metadata only after all data chunks are mi-
grated successfully. Since data migration just copies valid
data chunks to garbage chunks, even if it is interrupted, data
consistency is guaranteed because all valid data chunks and
metadata are not damaged.

To implement this idea, we design a “Back Patching” al-
gorithm. This algorithm maintains two pointers, s and e,
respectively pointing to the first garbage chunk and the last
valid chunk. The algorithm repeatedly copies data from
chunk e to chunk s, and then searches the next garbage
chunk and the previous valid chunk until the two pointers
meet. Finally, metadata is updated.

3.6 Automatic Extension
As mentioned in Section 3.1, AoDI adopts the“Allocation-

On-Demand” strategy and double-level volume structure.
The size of physical volume typically is not equal to that
of visible volume. When a new volume is created, the size of
visible volume is set to user’s requirement. However, AoDI
system does not allocate the same amount of physical space
to the volume. The physical volume that actually occupies
disk space, is initially much smaller than the visible volume.
With the growth of user data, the allocated physical space
may not meet the users’ real-time demands. So we design
an automatic physical volume extension algorithm to avoid
space overflow.

A user-space daemon process real-time monitors the usage
of the physical volume through the /proc file system. If the
space utilization exceeds the predefined threshold, the dae-
mon process will start extension. Since the human compo-
nent is removed entirely, AoDI can eliminate risk of overflow
timely.

Figure 4 shows the process of visible volume extension.
Unlike physical volume extension, visible volume extension
implies user address space extension, therefore metadata area
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Figure 4: Visible Volume Extension.

must be extended. We use a Metadata Index Array (MIA)
in the super chunk to maintain multiple metadata areas for
multiple user address segments as Figure 4 shows. The first
slot of MIA stores the pointer to metadata M0 for the orig-
inal user address space L0, and the second slot stores the
pointer to metadata M1 for the first extended user address
space L1, and so on. Our experimental results show that,
using this structure, extended visible volumes achieve almost
the same performance as original volumes.

3.7 Non-COW Snapshot
As mentioned in Section 1, AoDI is not only a kind of

volume in LVM, but also a basic platform. We can develop
a lot of applications on it. In this paper, we introduce an
application named Non-COW (Non Copy On Write) snap-
shot.

Non-COW snapshot is named opposed to Copy On Write

(COW ) snapshot used in LVM. For a original volume with
COW snapshots, write performance is impacted seriously by
COW operations especially when multiple snapshots are ac-
tive simultaneously. Since AoDI adopts appending strategy
to deal with write requests, it natively keeps all revisions of
data. We can design a snapshot technology avoiding COW
based on this property. Each snapshot is just an area of con-
tinuous data chunks, and snapshot creating is just recording
the last used data chunk as the end point of the last snap-
shot and the first unused data chunk as the start point of the
new snapshot. Since user-physical address mapping in AoDI
is dynamic rather than fixed, we must maintain a unique
chunkmap for each snapshot. Each snapshot shares a part
of data versions with its subsequent snapshots if these ver-
sions are not modified during subsequent snapshots. There-
fore, each snapshot partially shares its chunkmap with its
successors. To avoid metadata (chunkmap) copying when
snapshot creating, we design a dependent chunkmap chain.
For each snapshot, address mapping is done by looking up
not only its own chunkmap, but also its predecessor snap-
shots’ chunkmaps (dependent chunkmaps). We maintain a
bit vector for each metadata chunk to record dependency
between chunkmaps of different snapshot versions. For the
i-th snapshot, when a mapping entry is looked up, AoDI
finds the last set bit from the 0-th bit to the (i − 1)-th bit
of the bit vector corresponding to the metadata chunk con-
taining the entry. The j-th bit is the last set bit means that
the newest version of this metadata chunk is stored in the
j-th snapshot. Then this metadata chunk is read from the
j-th snapshot’s chunkmap to cache as the metadata of the
i-th snapshot. When the metadata chunk is modified, it is
written back to the chunkmap of the i-th rather than the j-
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Volume.

th snapshot. We can see that this method avoids metadata
COW effectively.

4. EXPERIMENTAL RESULTS

4.1 The Experimental Platform
The experiments were done on 64-bit RedHat Linux AS 5,

whose kernel version is 2.6.18−128.el5. The benchmark tool
is IOmeter, which can generate read or write requests to sim-
ulate real applications. Besides synthetic workload, we also
tested the real-world performance using HP trace [1]. The
hardware used in experiments is a DELL Power Edge 2850
Server with dual Inter Xeon CPU (2.66GHZ), 3GB memory
and a hardware RAID-0 storage composed of six 37GB SAS
disks.

On the experimental platform, two kinds of volume, LVM
logical volume and AoDI volume, were created to compare
their performance. The size of both volumes is 100GB.

4.2 Experimental Results

4.2.1 Throughput

As the most important criterion to storage systems, the
throughput of LVM and AoDI were tested firstly. Figure
5 shows the results of sequential and random write perfor-
mance with different request size. As expected, LVM and
AoDI have almost the same sequential write performance.
However, the random write performance of AoDI is much
better than that of LVM especially under small requests.
This result verifies the advantage of appending strategy in
converting random write requests into continuous disk write
operations.

Figure 5 also shows the results of read test. Since we used
synthetic workload in this test, the random access is com-
pletely random rather than containing some repetitive access
patterns. Therefore, AoDI does not show advantage in ran-
dom read performance. However, if real-world workload is
used, AoDI is expected to show its advantage.

4.2.2 Impact of Cache Size

Since metadata cache is an important factor to AoDI’s
performance, the impact of cache size has also been tested
in experiments. Here, 20%, 40%, 60%, 80% and 100% mean
the ratio of cache size to the size of chunkmap. Figure 6,
Figure 7, Figure 8 and Figure 9 show the experimental
results of sequential write, random write, sequential read and
random read respectively. We can see that as the cache size
decreases, throughput drops remarkably. In the experiments
of sequential write, sequential read and random read, AoDI
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is inferior to LVM because of extra cache replacement. In
random write experiment, especially under small requests,
the throughput of AoDI is better than LVM. However, as the
request size increases and the impact of disk seek weakens,
LVM is better increasingly. So better cache replacement
strategy is an important future works.

4.2.3 Real-World Workload

Figure ?? shows the performance of AoDI and LVM with
real-world workload. HP TPC-D trace [1] was used in this
test. Since this real-world trace is mainly composed of ran-
dom requests, and read and write have some similar access
patterns, AoDI shows great advantage in response time due
to its appending strategy.
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4.2.4 Automatic Extension Performance

We also test the performance of automatic extension. First
we test the speed of physical volume automatic extension.
Test is divided into three groups that initial physical volume
size is 1GB, 10GB and 100GB respectively. The extension
time tested with the increment ratio from 10% to 100%.
Figure ?? shows the result. We can see that the initial size
and the increment ratio hardly impact the extension time

0

20

40

60

80

100

120

140

160

180

200

S
p
e
e
d
 (
M
B
p
s)

Request Size

LVM

AoDI 100%

AoDI 80%

AoDI 60%

AoDI 40%

AoDI 20%

Figure 8: Sequential Read.

0

20

40

60

80

100

120

140

160

180

200

S
p
e
e
d
 (
M
B
p
s)

Request Size

LVM

AoDI 100%

AoDI 80%

AoDI 60%

AoDI 40%

AoDI 20%

Figure 9: Random Read.

that remains a very small value. This implies that automatic
physical volume extension will not decrease user experience.

Two volumes are used to test the performance of extended
visible volume. One is 200GB, another is initially 20GB and
is extended 9 times to 200G. That is, the former volume
has only one metadata area, the latter one has ten. We
test the read and write performance for both of them. As
the Figure ?? shows, we can see the performance of two
volumes is basically the same. That is, multiple metadata
areas structure caused by visible volume extension does not
decrease performance perceptibly.

4.2.5 Snapshot

As we develop a Non-COW snapshot system based on
AoDI, we also compare the degradation of throughput in
LVM snapshot and Non-COW snapshot. We test the through-
put after creating 3 snapshots for both kinds of volume.
Here, we set the ratio of cache size to the size of chunkmap
as 20% that is a very harsh setting to AoDI. Figure ?? show
the results. Because of COW mechanism, when dealing with
write requests, LVM snapshot performs much more extra
I/O operations that cause seriously throughput degradation.
Moreover, as the number of snapshots increases, the perfor-
mance gap becomes wider. However, in AoDI, the through-
put does not decrease after creating snapshots because ap-
pending strategy does not introduce extra I/O operations in
snapshot. Since COW does not introduce extra I/O opera-
tion during dealing with read request, LVM snapshot does
not show read throughput degradation, so does AoDI snap-
shot. Although Figure ?? show the advantage of LVM snap-
shot in read throughput, we note that LVM snapshot places
metadata entirely in main memory. If AoDI uses cache size
ratio 100%, it will obtain similar performance.

5. CONCLUSIONS
Storage management is one of the most important issues in
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cloud computing. Traditionally, storage is allocated by users’
predictions. It may cause bad space utilization because of
overprovisioning or underprovisioning. In this paper, an
Allocation-On-Demand Incremental (AoDI) Volume mech-
anism is presented. AoDI has double-level volume structure
and uses appending rather than overwriting strategy to deal
with the write requests. Both space utilization and write per-
formance of storage can benefit from AoDI. Moreover, using
an automatic volume expanding technique, AoDI can allo-
cate storage space always matching users’ real-time require-
ment to avoid space wasting. We also design a Non-COW
snapshot based on AoDI that is dramatically faster than
traditional COW snapshots. We implement AoDI based on
LVM in Linux. Our experimental results show the great per-
formance advantage of AoDI in snapshot and random access.

In future work, we will mainly focus on optimizing the
metadata organization and defragmentation technology. As
a platform, AoDI can also be used by other applications,
such as remote replication, continuous data protection and
so on.
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