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Abstract—Recently, structured P2P (Peer-to-Peer) system
has become more and more popular. However, P2P systems’
large scale and high dynamics have brought a great challenge
to data availability and accessing performance. Redundancy
techniques are used to solve these problems. However, in
structured P2P systems, due to the consistent hash, the overlay
network could not match underlying physical network well.
The nodes close to each other in the overlay network may
have long distances of physical network. In this paper, we put
forward a new P2P architecture that constructs node identifiers
and places redundant data according to physical location
information. It can provide better load balance and access
performance. The node’s identifier is divided into four parts,
representing the node’s state, ISP, city and IP respectively, so
the nodes having similar identifiers are close to each other
in the physical network. Moreover, a query tree is used to
help a node routing queries quickly in the physical network.
In addition, we maintain an access list for each file. When a
node becomes overloaded, replicas are placed on another node
selected in the routing path according to the access list, so
subsequent access requests could be met in advance.
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I. INTRODUCTION

Recently, P2P has become more and more popular. It has
been widely used in file exchanging, peer-to-peer computing
and so on. P2P systems have large scale and highly dynam-
ics, that have brought a great challenge. In large-scale P2P
systems, hundreds of millions of nodes may join and leave
unpredictably, the data availability and access performance
will be greatly reduced.

At present, redundancy techniques are used to improve
the data reliability, the access performance and the load
balance. The crucial problem is how to place and lookup the
redundant information. However, In the current structured
P2P networks (such as Chord [1]) the routing process and
the placement of redundant information does not take into
account the physical distance between nodes, leading to high
delay.

This paper proposes a method to improve Chord proto-
col, in which routing and replica placement are based on
the physical location information. Based on the improved
protocol, the majority of communication is limited in the
physically proximal nodes. Our method divides the node’s
identifier into four parts, representing the node’s state, ISP,
city and IP respectively, so the nodes whose identifiers are
more similar will be more proximal to each other in the

physical network. For each node, we use a query tree to
deliver requests to it physically adjacent nodes. We also
maintain an access list. When a node becomes overloaded,
it will place replicas on the routing path according to the
access list, so subsequent access requests will be met in
advance. At last, we design several simulating experiments
to verify the method.

II. RELATED WORK

A. Redundancy mechanism

Redundancy techniques, mainly replication and erasure
coding, are the general approaches to improve P2P systems’
data availability.

Replication is the most simple redundancy technique.
Many replicas of the original data are distributed to the
P2P network. Recently, there are many replication strategies
in the context of both unstructured [2] [3] and structured
overlay networks [4] [5]. An important issue is where
to place the replicas. There are three strategies. The first
method places fixed number of replicas in successor nodes
evenly. If the host node fails, it can be replaced by the
subsequent nodes automatically. CFS [6] uses this approach.
This approach can enhance data persistence. However, the
load on the host node is too heavy and the replicas are not
utilized sufficiently. The second method selects replica nodes
using several extra hash functions. This approach not only
increases data reliability, but also improves the utilization of
a replica by evenly distributing the requests on a data object
over all replica nodes. And reference [7] [8] both use this
approach. The third method maintains a query tree for each
node [9]. Queries will be routed along the path from the
source node to the root of the tree (the destination node).
It could pre-position replicas on the query path to meet the
requests of query as soon as possible, that reduces the load
of the root and gets a better load balance.

Erasure coding strategy is the strategy that divides the
original data into m blocks firstly, and then encodes them
into the n blocks (n > m), finally, places n blocks to the
network independently. If we want to search the original
data, just any m blocks can restore the original data.
Related research and analysis [10] show that under the same
data failure probability, compared with replication, erasure
coding occupies less storage space and communication band-
width, but requires more computation.
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B. Physical location information

In P2P networks, network measurement methods optimize
the routing delay and redundancy costs by calculating the
physical distance between nodes. GNP [11] measures the
network distance based on coordinates. It maps the network
nodes to the geometric space (such as three-dimensional
Euclidean space). GNP selects a group of nodes in fixed
locations as landmark nodes, and calculates their coordi-
nates. Then it calculates the coordinates of other nodes based
on round-trip delay (RTT) between the node and landmark
node. Finally, the physical distance of two nodes can be
got by calculating their geometric distance. Vivaldi [12]
algorithm also maps the network nodes to the geometry of
space dispersedly. It assumes that the connection between
each pair of nodes like a spring. The length of rested spring
between nodes is the calculative distance by RTT. Then this
algorithm optimizes the distance by adjusting the coordinates
of nodes to achieve the stability of the spring system under
hypothetical spring action, which also makes the nodes’
coordinates optimized.

III. P2P ARCHITECTURE BASED ON PHYSICAL DISTANCE

The current structured P2P networks (such as Chord)
do not take the physical delay into account in routing
and redundant information placement leading to inefficient
query. This paper proposes a novel P2P architecture based
on physical distance. It connects the logic distance with
physical distance, by constructing nodes’ identifiers and
routing queries using the physical location information. Fig.1
illustrates Chord and our architecture. Chord uses consistent
hashing algorithm resulting in that logically proximal nodes
may be far away in physical distance. While in our new
architecture, proximal nodes in the overlay network will be
proximal in the physical network. The redundant information
is placed in the physical routing path, so the queries can be
satisfied at nearer nodes and hot spots can be eliminated.

(a) Chord (b) New architecture

Figure 1: Comparison with Chord and New architecture

A. Dividing overlay network according to the physical dis-
tance

In the Chord structure, the node identifiers are generated
by the consistent hash function, which maps nodes’ proper-
ties (such as IPs) to the value space [0, 2m). The distribution

of node identifiers is random and there is no relationship
among them. In our architecture based on physical distance,
the node identifiers describe the characteristics of the phys-
ical network. Fig.2 shows the tree established according to
node’s physical locations of the nodes. The descendant nodes
of roots denote countries, ISPs, cities and IP addresses re-
spectively. For example, the node www.nankai.edu.cn has IP
address 202.113.16.33, and its physical location information
is the China / CERNET / Tian Jin can be found in Fig.2.

In this paper, we use hierarchy “country-ISP-city-IP” to
describe physical distance. This hierarchy may not accord
with real physical distance very well. For example, it is pos-
sible that a node is closer to a node in another country than
another node in the same country. However, our approach
is independent of this hierarchy. Other methods depicting
physical distance more accurately, such as network measure
and clustering, can be easily introduced into our approach.

Figure 2: Tree network

B. Generating of node identifier

In the proposed P2P architecture, a node identifier is
composed of four parts. Fig.3 shows how to generate a
identifier, H1, H2, H3, H4 are four hash functions, used
to generate hash values of country, ISP, city and IP address,
N1, N2, N3, N4 respectively. We concatenate these hash
values into node’s identifier N1N2N3N4. For example, fig.2
shows that the country, ISP, city and IP addresses of the
node www.nankai.edu.cn are China, CERNET, Tianjin and
202.113.16.33 respectively. If their hash values are 1010,
011010, 10011100 and 1110110011 severally, the node
identifier is 1010011010100111001110110011. We define
that:

dist(A,B) is the physical distance of node A and B and
prefix(A,B) is the length of the longest common prefix of
the identifiers of A and B. For example, if N1 and N5 are
the hash values of two different countries, N2 and N6 are
the hash values of two different ISPs, N3, N7 are the hash
values of two different cities and N4, N8 are the hash values
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of different IP addresses, prefix(N1N2N3N4, N1N2N7N8)

Figure 3: Generation of node identifier

is 2, while prefix(N1N2N3N4, N5N6N7N8) is 0. So we
can claim:

• The nodes in the same sub-network have the
longest common identifier prefix. For example,
www.nankai.edu.cn and it.nankai.edu.cn in Figure 2
have the common country, ISP and city parts in their
identifiers.

• For any three nodes A,B and C, if dist(A,B) <
dist(A,C), prefix(A,B) > prefix(A,C).

• For any three nodes A,B and C, if prefix(A,B) <
prefix(A,C), dist(A,B) > dist(A,C).

From the three features described above we can conclude
that nodes with more similar identifiers are nearer. One
of important tasks in a Chord system is to maintain the
connectivity of the entire ring network. Each node needs
to send heartbeat packets periodically to subsequent node
to detect whether it is online, and the heartbeat packets
produce most of the network traffic in the system. Our new
architecture reduces this overhead effectively.

To analyze the data packet delay, we make the assump-
tions: all the nodes are distributed evenly in m1 countries,
each country contains m2 ISP, each ISP contains m3 cities,
and the distributions of nodes among ISPs and cities are
also uniform; the number of nodes is N ; the delays among
the different countries, different ISPs in the same country,
different cities belonging to the same ISP, and different
nodes in the same cities are d1, d2, d3, d4 . In this paper,
we suppose that d1 > d2 > d3 > d4. Because in P2P
systems the heartbeat packets between logically adjacent
nodes produce most of the network traffic, we analyze the
average delay of heartbeat packets to evaluate the network
overhead.

In a Chord system which physical distance is not taken
into account, for two logically adjacent nodes, the probabil-
ity of they in different countries is m1−1

m1
; the probability of

they in different ISPs of the same country is 1
m1
· m2−1

m2
;

the probability of they in different cities of same ISP is
1

m1
· 1
m2
· m3−1

m3
; the probability of they in the same city

is 1
m1
· 1
m2
· 1
m3

. Therefore, the average delay of heartbeat
packets is:

Li =
m1 − 1

m1
d1 +

1

m1
· m2 − 1

m2
· d2

+
1

m1
· 1

m2
· m3 − 1

m3
· d3 +

1

m1
· 1

m2
· 1

m3
· d4

≈ d1 (m1 � 1) (1)

We can also conclude that in the Chord system which
physical distance is not taken into account, the average delay
among all the nodes is Li in that the logical distance is
irrelevant to the physical distance.

In the proposed architecture based on physical distance,
the Chord ring is divided into m1 arcs (sub-networks)
denoting countries, each containing m2 sub-arcs denoting
ISPs. Each sub-arc consists of m3 sub-sub-arcs denoting
cities. Assume that, the nodes are uniformly distributed in
the ring space. If there are enough nodes, the number of
adjacent node pairs in different countries is m1; the number
of adjacent node pairs with different ISP is m1 · (m2 − 1);
the number of adjacent node pairs in the different cities is
m1 ·m2 · (m3 − 1); the number of adjacent node pairs in
the same city is m1 ·m2 ·m3 · ( N

m1·m2·m3
− 1). Therefore,

the average delay of heartbeat packets is:

Ld =



m1·d1+m1·(m2−1)·d2+m1·m2(
N

m1·m2
−1)·d3

N
,m1 ·m2 < N ≤ m1 ·m2 ·m3

m1·d1+m1·(m2−1)·d2+m1·m2·(m3−1)·d3

N +
m1·m2·m3(

N
m1·m2·m3

−1)·d4

N
, N > m1 ·m2 ·m3

(2)

The equation 2 can be simplified:

Ld ≈



m1·m2

N · (d2 − d3) + d3
,m1 ·m2 < N ≤ m1 ·m2 ·m3

m1·m2·m3

N · (d3 − d4) + d4
, N > m1 ·m2 ·m3

(3)

From equation 1 we can see that if physical distance is not
taken into account, the average packet delay is unrelated to
the number of nodes N . However, we can find from equation
3 that in the architecture based on physical distance the data
packet delay increases with increasing N . We also can find
that Ld < Li by the simple proof. Therefore, the improved
method could reduce the network overhead effectively.

Now we analysis query packet delay of Chord protocol
and improved protocol. In the Chord routing algorithm [1],
routing hops of query packet is smaller than log2N . We
can assume that the average routing hops of query packet is
log2 N

2 . So the average delay of query packet is:

Fi ≈
log2 N

2
· d1 (4)

In the architecture based on physical distance, the average
routing hops of query packet among the different countries
is log2 m1

2 , among the different ISPs is log2 m2

2 , among

245



the different cities is log2 m3

2 and in the same city is
log2 N−log2 m1−log2 m2−log2 m3

2 . The average delay of query
packet is:

Fd ≈
log2 m1

2
· d1 +

log2 m2

2
· d2 +

log2 m3

2
· d3 +

log2 N − log2 m1 − log2 m2 − log2 m3

2
· d4 (5)

From equation 4 and 5 we can see that the average delays
of query packet in the two architectures both increase as N
increases; We obviously find that Fd < Fi and the growth
rate of Fd is smaller than Fi as N increases.

C. Query tree

ABCD

A1BCD A2BCD AaBCD

A1B1CD

...

A1Bb1CD... A2B1CD A2BbiCD... AaB1CD AaBbnCD...

A2B1C1D A2B1CciD... AaB1C1D AaB1CcxD...

A2B1C1D1 A2B1C1Ddi

... ...

AaB1C1D1 AaB1C1Ddx... ...

Figure 4: Query tree

In the proposed architecture, a special tree call query
tree is used to help routing. A query tree has a height of
5 as fig.4 shows. Each node identifier includes four parts,
which are hash values of country, ISP, city and IP address.
For convenience, we use c(X), i(X), t(X) and p(X) to
denote the four hash values of the node X respectively.
For example, as shown in fig.4, if the identifier of root is
ABCD, c(ABCD) = A, i(ABCD) = B, t(ABCD) = C,
and p(ABCD) = D. A query tree satisfies:

• The root R and its child C satisfy: c(R) 6= c(C),
i(R) = i(C), t(R) = t(C) and p(R) = p(C);

• Each second level node P and its child C satisfy:
c(P ) = c(C), i(P ) 6= i(C), t(P ) = t(C) and
p(P ) = p(C);

• Each third layer node P and its child C satisfy: c(P ) =
c(C), i(P ) = i(C), t(P ) 6= t(C) and p(P ) = p(C);

• Each fourth layer node P and its child C satisfy:
c(P ) = c(C), i(P ) = i(C), t(P ) = t(C) and
p(P ) 6= p(C).

IV. META-DATA OPERATION

This section will introduce meta-data related operations,
including publishing, query and replication of the meta-data.

A. Meta-data publishing

The meta-data with identifier k, that designates the des-
tination node, is published by a node. Afterward, the meta-
data is delivered to the destination node by Chord routing
protocol. If node k is on-line, then node k is the destination
node; if node k is not on-line, then the successor of k will be
the destination node. The actual destination node is called
the primary node for the meta-data. Finally, the primary node
receives the meta-data and then stores it locally.

B. Meta-data query

When node n receives the query request, the essential
work is to identify the destination node k of the query
request. Then find the parent node f of node n in the query
tree with root k and forward the request to f . When f
receives the request, it checks whether the requested meta-
data is stored locally, that is, whether it is the primary node
of the meta-data. If so, the result is sent to node n directly;
otherwise, the algorithm continues to forward the request to
f ’s parent node until reaching the root node. Fig.5 shows a
simple example of query routing. A query is initiated from
node 5672 to node 1234, so the root of the query tree is
1234. The query path is shown using dotted line.

Figure 5: Routing using query tree

Query tree has an important property: for queries to
the same destination node, source nodes in the same sub-
network (physical area) will share a specific routing path.
Fig.5 shows an examples, if the destination node is 1234,
the query launched by the nodes from the sub-network 567*
will be routed to node 5674; the query launched by the nodes
from the sub-network 56** will be routed to node 5634; the
query launched by the nodes from the sub-network 5***
will be routed to node 5234. This property is very useful
for meta-data replication which will be introduced in the
following parts.

C. Meta-data replication

the heterogeneity and load imbalance will overload node.
Replication is a common method to solve this problem. In
our proposed architecture, query tree can be used to improve
the performance of replication mechanism. As mentioned
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above, nodes in the same sub-network will route queries to
the same destination along the same path. This property can
help replica placing. Every node maintains an access list
for each meta-data to record its recent access information.
Assume that node n is overloaded,it will select the meta-data
k from access list that is accessed most frequently, and then
arranges the replica for k in the sub-network that forwards
most of accesses to k.

Node 1235

Data:1234 count:95 Data:1233 count:36

Src:   count

4234:     40
5234:     17
6234:     12
2234:      9
7234:      7
9234:      4
3234:      3
0234:      2
8234:      1

4233:      7
7233:      5
0233:      5
2233:      4
5233:      4
9233:      4
3233:      3
6233:      2
8233:      2

Src:   count

Figure 6: Access list of node 1235

Assume that the primary node of meta-data 1234 is 1235.
Fig.6 shows node 1235’s two access lists for meta-data 1233
and 1234 with recent visit counts 36 and 95 respectively.
When the node 1235 is overloaded, the sub-network 4***,
that forwards most of accesses to the meta-data 1234, will be
chosen. And the replica of 1234 is placed at the successor
of 4234, said R, which will become the primary node of
1234 in the sub-network 4***. So the primary node could
meet the query from the sub-network 4***. Therefore the
load on 1235 is reduced. R also maintains an access list for
meta-data 1234. If the accesses to meta-data 1234 cause the
overload of R, it will arrange a replica at the sub-network
that most frequently accesses 1234.

The method of arranging replica in the “hot” sub-network
can solve the problem of node overload effectively. More-
over, with the spread of replicas, the replica and the source
node of the query become closer. This can reduce delay
greatly.

In order to analyze the rate of successful queries and the
access performance, we make assumptions just like section
III-B and assume that the probability of data failure is ps; in
the query tree, the probability of root node creating replica is
pt. In the ordinary Chord architecture the rate of successful
queries is:

Si = 1− ps (6)

In our proposed architecture using query tree, the probability

of root node creating replica is pt. Suppose the query source
is uniformly distributed, then the number of queries received
in the second layer of the query tree accounts for 1

m1
of the

total, the number of queries received in the third layer of the
query tree accounts for 1

m1·m2
of the total. Therefore, the

probability of creating replica in the second layer is pt

m1
, the

probability of creating replica in the third layer is pt

m1·m2
.

The probability of existence of replica in the second level
is pt ; The probability of existence of replica in the third
level is pt · pt

m1
; The probability of existence of replica in the

third level is pt · pt

m1
· pt

m1·m2
. Therefore, the rate of successful

queries is:

Sd = 1− [(1− pt) · ps + ps · (pt · ps) · (pt ·
pt
m1
·

ps) + . . .]

≈ 1− [(1− pt) · ps + ps · (pt · ps)]
≈ (1− ps) + pt · (ps − p2s) (7)

From the comparison with equation 6 and 7, we can
find that our proposed architecture improves the rate of
successful queries by pt · (ps − p2s).

In the ordinary Chord architecture, the total query delay
is:

Di ≈ d1 (8)

And in our proposed architecture, the total query delay is:

Dd = (1− pt) · d1 + pt · (1−
pt
m1

) · d2 +

mpt ·
pt
m1

(1− pt
m2

) · d3 + pt ·
pt
m1
·

pt
m1 ·m2

· d4

≈ (1− pt) · d1 + pt · d2
≈ d1 − pt · (d1 − d2) (9)

From the comparison with equation 8 and 9, we can see
our proposed architecture reduces the query delay by pt ·
(d1 − d2).

V. EXPERIMENT

A. Experimental environment

In order to verify the advantage of the method based on
physical distance, we carried out some simulation experi-
ments. Simulator used in this paper is The Chord Simulator
[13], which is designed based on event mechanism by MIT
CSAIL (Computer Science and Artificial Intelligence Labo-
ratory) in 2003. It can simulate the events of node joining,
node leaving, adding resources and searching resources.

B. Simulation experiments and results analysis

Experiments in the input file are the events of node join-
ing, node leaving, adding resources and searching resources.
It is generated according to some parameters:
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• The number of nodes. The nodes evenly distributed in
20 countries, while each country has 20 ISP and each
ISP has 50 cities.

• Number of resources.
• Number of Queries.
• Distribution of node joining and leaving. The time

interval of joining and leaving meets the Pareto dis-
tribution, which has two parameters shape and scale.
Shape is related to the system’s dynamics which is the
dynamic changes of the system as nodes join and leave.
The smaller value of shape is, the more frequent nodes
join and leave, that leads to the higher dynamics of
the system. The simulation experiments changed the
dynamics of the system by changing the value of shape.

• Query distribution. Uniform or Zipf.

C. Comparison of packet delays

In P2P system based on physical distance, nodes identified
by four parts, country, ISP, city and IP address. The nodes
with short physical distance are close to each other in the
logical locations. Therefore, the majority of communication
is limited in the location where the nodes close to each other
in the physical location. To verify the effect of reducing the
packet delay in the improved system, we performed two
groups of experiments to test node joining and leaving. The
test time is 1000 seconds, the number of resources is 1000,
the number of queries is 1000. The query distribution was
uniform distribution. In the simulation, we assumed that the
delay of nodes between different countries is 200ms; the
delay of nodes between different ISP in the same country
is 100ms; the delay of nodes between different cities with
same ISP in the same country is 50ms; the delay of nodes
with the same ISP in the same city is 10ms.

Figure 7 shows the results with the constant dynamics of
the system. There are four curves, “chord-all” and “chord-
query” severally represent the average delay of all data
packets and query packets in the ordinary Chord system;
“phys-all” and “phys-query” represent the average delay of
all data packets and query packets in the improved Chord
system based on physical distance. As can be seen from the
results:

• There is no significant change of average delay of all
data packets with two methods as the increment of
nodes.

• The average delays of query packets with both methods
increases as the increment of nodes.

• The average delay of all packets with proposed ar-
chitecture is reduced by 55% ∼ 65% compared with
Chord.

• The average delay of query packets in the proposed
architecture increases more slowly than Chord as the
increment of nodes.

In the second experiment, with a constant number of
nodes 2000, we change the dynamics of the system to test

1200

1000

1200

600

800

1000

1200

(m
s) chord-all

400

600

800

1000

1200

D
el

ay
(m

s) chord-all
phys-all
chord-query

200

400

600

800

1000

1200

D
el

ay
(m

s) chord-all
phys-all
chord-query
phys-query

0

200

400

600

800

1000

1200

2000 4000 6000 8000

D
el

ay
(m

s)

Number of nodes

chord-all
phys-all
chord-query
phys-query

0

200

400

600

800

1000

1200

2000 4000 6000 8000

D
el

ay
(m

s)

Number of nodes

chord-all
phys-all
chord-query
phys-query

0

200

400

600

800

1000

1200

2000 4000 6000 8000

D
el

ay
(m

s)

Number of nodes

chord-all
phys-all
chord-query
phys-query

Figure 7: Average packet delay with the constant dynamic
of the system

the packet delay. The results are shown in fig.8. As can be
seen from the results:

• With the dynamics change of the system, there is no
significant change of average delay of all data packets
and query data packets with two methods.

• The average delay of all packets with proposed ar-
chitecture is reduced by 50% ∼ 55% compared with
Chord.

As can be seen from the above two experiments, the
number of nodes and dynamics of the system have limited
impact on the average delay of all data packets. Meanwhile,
the average delay of query data packets increases as the
increment of nodes because routing hops are related to the
number of nodes. The proposed architecture can effectively
reduce the average packet delay and shorten the transmission
distance of data packets.
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Figure 8: Average packet delay with the constant number of
nodes

D. Comparison of successful query rate

In this paper, the proposed method divides the node ID
into four parts. Simultaneously, queries are no longer sent
to the destination node directly but to reach the destination
node using the query tree, while the replicas of the query
are placed to some appropriate areas. In order to test its
rate of successful queries, this section has two comparative
experiments. The test time is 1000 seconds, the number of
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resources is 1000 in the system, the number of query is
1000, and the number of nodes is 2000. The results of two
experiments are described as followed:

In the first experiments, the resources queried are evenly
distributed. With the constant number of nodes, we change
the dynamics of the system to test the rate of successful
queries. The experimental results are shown in fig.9. The
results can be seen that there was no significant difference
in rate of successful queries with two methods and the rates
both increase as the reduction of the system’s dynamics. That
is because the resources queried are uniformly distributed
leading to the root rarely spreads a replica.
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Figure 9: Rate of successful query with uniform distribution

In the second experiments, the distribution of resources
queried is Zipf distribution. The experimental results are
shown in fig.10. As can be seen from the experimental
results, the rate of successful queries with two methods
both increase as the reduction of the system’s dynamics.
Furthermore, the rate of query tree method is higher than
that of Chord. Since query target meets Zipf distribution,
hot spots exist in the system resulting in queries on the
20% resources accounting for 80% of all the queries, and the
probability of the root spreading replica is 0.8. According to
Formula 6 and 7, the rate of successful queries with query
tree method increases about 0.8ps(1− ps). In fig.10, query
tree method increases successful rate by 13% ∼ 23%. It
has been shown that the experimental results are in good
agreement with the theoretical analysis.
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Figure 10: Success rate with Zipf distribution

E. Comparison of the performance of access requests

Using the query tree and replication can improve the
performance of access requests. To verify the improvement,
this section does comparative experiments. The evaluation
metric is the physical delay between the initiated node and
the query hit. In the experiments, the simulation time is 1000
seconds, the number of resources is 1000, the number of
queries is 1000, and the number of nodes is 2000.

In the first experiment, the query target is uniformly
distributed. With the constant number of nodes, we change
the dynamics of the system to test the performance of access
requests. The experimental results are shown in fig.11. We
can see that, with the dynamics of the system reduced, the
physical delay between the initiated node and the query hit
node in both systems don’t change significantly. The two
systems perform close, however the proposed architecture is
slightly better.
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Figure 11: Delay with uniform distribution

In the second experiment, the query target meet the Zipf
distribution. With the constant number of nodes, we change
the dynamics of the system to test the performance of access
requests. The experimental results are shown in fig.12. We
can see that, with the degree of system dynamics reduced,
the physical delay between the initiated node and the query
hit node in both systems don’t change significantly. The
proposed architecture decreases delay remarkably. When the
query target meets the Zipf distribution, there is hot spot
issues and the queries of 20% of the resources occupied 80%
of all queries, so the probability of distributing replicas is
0.8. As mentioned in section IV-C, compared with Chord,
the proposed architecture theoretically reduces physical de-
lay by 0.8∗ (200−100) (about 80ms). As can be seen from
fig.12, when using query tree, the physical delay is reduced
about 60 ∼ 85 ms, about 30% ∼ 45% , that is well agreed
with the theoretical analysis.

VI. CONCLUSIONS

In the proposed P2P systems based on physical location,
when using the query tree in accordance with the physical
location, the queries from the same sub-network converge
to the primary node of the sub-network. The simulation
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Figure 12: Delay with Zipf distribution

experiments shows that placing a replica on the sub-network
root node makes the queries from the same sub-network
acknowledged by the primary node in advance, which reduce
the time required for data transmission. This will not only
increase the reliability of data but also greatly improve the
system performance of access requests.

In the following study, we will continue to improve our
system. For example, to generate the node identifier we can
use such as Huffman encoding which can solve the problem
of namespace imbalance. Furthermore, besides the hierar-
chy “country-ISP-city-IP”, we will use new methods, such
as network measure and clustering, to construct distance
hierarchy that describes the physical delay more precisely.
Besides, we can use the method based physical distance on
other P2P system to verify its effect.
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