
Generalizing RDP Codes Using the Combinatorial Method* 
 
 

Wang Gang, Liu Xiaoguang, Lin Sheng, Xie Guangjun, Liu Jing 
Dept. of Computer, College of Information Technical Science, 

Nankai University, 300071, Tianjin, China 
wgzwp@163.com 

 
 

Abstract* 
 

In this paper, we present PDHLatin - a new class of 
2-erasure horizontal codes with dependent parity 
symbols based on column-hamiltonian Latin squares 
(CHLS). We prove that PDHLatin codes are MDS 
codes. We also present a new class of 2-erasure parity 
independent mixed codes based on CHLS - PIMLatin. 
We show that the performance of the new codes is 
comparable to or better than other codes of this kind. 
They have perfect parameter flexibility and structure 
variety that benefit performance. We also discuss code 
shortening technologies that can improve parameter 
flexibility, structure variety and reliability. Borrowing 
ideas from vertical shortening, we develop a 2-erasure 
array code construction method using non-hamiltonian 
Latin squares. 
 
1. Introduction 
 

In recent years, as hard disks have grown greatly in 
size and storage systems have grown in size and 
complexity, it is more frequent that a failure of one 
disk occurs in tandem with unreconstructed failures of 
other disks or latent failures of blocks on other disks. 
On a system using single-erasure correcting code such 
as RAID5, this combination of failures leads to a 
permanent data loss [1]. Hence, applications of multi-
erasure correcting codes have become more pervasive. 
But all of the known multi-erasure coding techniques 
have limitations [2]. This paper offers a class of 2-
erasure codes based on column-hamiltonian Latin 
squares. The new codes outperform anything else of its 
kind in terms of parameter flexibility and 
computational performance. 
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The outline of this paper is as follows. In Section 2 
we discuss related works. Section 3 is devoted to 
introducing a graph representation of 2-erasure 
correcting codes, Latin squares and perfect one-
factorizations. In Section 4 we present PDHLatin and 
PIMLatin. Code shortening and constructing codes by 
non-hamiltonian Latin squares are also discussed in 
this section. A theoretical analysis is discussed in 
Section 5. Conclusions and future works are presented 
in Section 6. 
 
2. Current multi-erasure codes 
 

Plank’s tutorial on FAST’05 gives a great 
introduction of erasure codes for storage applications 
[2]. An erasure code for storage systems is a scheme 
that encodes the content on n data disks into m check 
disks so that the system is resilient to any t device 
failures. Unfortunately, there is no consensus on the 
best coding technique for n, m, t > 1. 

The known multi-erasure codes typically fall into 
one of three categories: Reed-Solomon codes, binary 
linear codes or array codes. RS codes [3] are the only 
known MDS codes for arbitrary n, m (=t). This means 
optimal storage efficiency and optimal update penalty. 
But the computational complexity is a serious problem 
because Galois Field computation is used though 
optimized algorithms have been developed [4]. 

Binary linear codes [5] are XOR-based, hence have 
perfect computational complexity, but bad storage 
efficiency is their inherent drawback. Fig 1.a shows a 
2d-parity code [5], where Dij denotes a data symbol 
that participates in parity symbols Pi and Qj. This 
example illustrates the key idea of linear codes - divide 
data symbols into several overlapping parity groups; 
namely each data symbol participates in multiple 
groups, so that multi erasures are tolerated. 

Array codes arrange data/parity symbols into an 
array, hence the name. EVENODD [6] is the first 
MDS array code, perhaps also the most important one - 



many subsequent array codes are similar to it and its 
generalization [7], such as X-code [8], RDP [1], 
STAR-code [9], etc. EVENODD is 2-erasure, 
horizontal (some disks contain nothing but data 
symbols, and the others contain only parity symbols. 
The opposite is vertical codes in which the parity 
symbols and the data symbols are stored together) and 
parity independent (none of the parity symbols 
participate in other parity groups). Fig 1.b shows the 7-
disk EVENODD code. A standard EVENDODD code 
with p+2 disks consists of a (p-1)*p data array and a 
(p-1)*2 parity array (where p must be a prime number). 
The first check disk is a horizontal parity disk, and the 
second is a skew diagonal parity disk. Di* denotes a 
data symbol that participates in Pi and all Qs. Namely, 
the sum S (over GF[2]) of all of these kind of symbols 
is added into every diagonal parity symbol. Thus the 
computational performance of EVENODD is non-
optimal. Moreover, in order to get optimal update 
penalty (the number of parity units needs to be 
modified when a data unit is modified), we must 
implement each column instead of each symbol as a 
stripe unit. Some literature has shown that these two 
properties are the inherent drawbacks of horizontal 
MDS array codes [7][10]. The p+2-disk EVENODD 
code can be transformed from the p*p+2p 2d-parity 
code. For example, the EVENODD code showed in 
Fig 1.b can be constructed by deleting P4, Q4 and 
D40~D44 from the 2d-parity code shown at the left. The 
contributors of S - members of Q4 are dealt with 
distinctly in order to gain MDS property. 

 
Figure 1. Binary Linear Codes and Array Codes. 

RDP is another important 2-erasure horizontal code. 
Fig 1.c shows the 6-disk RDP code. A standard (p+1)-
disk RDP code can be described by a (p-1)*(p+1) code 
array (where p must be a prime number). RDP can be 
constructed from 2d-parity codes too. Its strategy for 
the absence of the last Q is parity dependent. As Fig 
1.c shows, p-2 horizontal parity symbols also 
participate in diagonal parity groups, and p-2 data 
symbols participate in only horizontal parity groups. 
Such strategy leads to better computational 

performance than EVENODD. One important 
advantage of EVENODD and RDP is that they meet 
the RAID6 specification. Moreover their coding 
schemes are simple. Thus they are easy to implement. 

Most array codes require a prime-related size. 
Horizontal codes can alleviate this problem by 
horizontal shortening, but such a transformation is 
harmful to performance. 

B-Code [11] is an interesting 2-erasure vertical 
code constructed via perfect one-factorizations (P1F) 
of complete graphs. It has no prime-size limitation 
because of denseness of “P1F numbers.” PIHLatin 
codes [12] are parity independent horizontal codes 
based on column-hamiltonian Latin squares (CHLS). It 
also has no prime size limitation. 

In this paper, we mainly focus on RDP-like codes, 
namely, horizontal codes with dependent parity 
symbols. We call this kind of codes PDH codes (Parity 
Dependent Horizontal codes). We present a new class 
of PDH codes based on CHLS. We call it PDHLatin. It 
is the superset of RDP and is superior to RDP in 
parameter flexibility (applicability for different system 
sizes) and structure variety (how many different 
structures exist for a given size). 

 
3. Related combinatorics knowledge  
 
3.1. Graph representation of 2-erasure codes 
 

Some literature refers to simple graph 
representation of parity independent 2-erasure linear 
codes in which each data symbol participates in 
exactly two parity groups [5][11][13]: let each vertex 
denote a parity symbol and each edge denote a data 
symbol - the two endpoints of an edge are just the two 
parity symbols of the data symbol. Then an array code 
can be described by a graph partition if its underlying 
linear code can be described by a simple graph. So, we 
can study the construction of array codes through 
graph partition. We have proven the following theorem 
[13]: 
Theorem 1. If an array code can be described by a 
partition of a simple graph, it is a 2-erasure code iff the 
union of any pair of subgraphs of the partition doesn’t 
contain the following two types of structures: 
1. A path and its two vertices. (Containing an edge 

doesn’t mean containing its two vertices necessarily 
because an edge and its two vertices are separate 
objects - a data symbol and its two parity symbols) 
We call this kind of unrecoverable erasure Closed 
Parity Symbols Subset, CPSS for short. 

2. A cycle. We call it Closed Data Symbols Subset, 
CDSS for short. 



 
Figure 2. Graph Representation. 

 
Figure 3. Constructing PDHLatin Using P1F. 

Fig 2.a shows the graph that corresponds to a 15-
disk 2d-parity code. Fig 2.b shows an array code based 
on it. Fig 2.c and 2.d give a CPSS example and a 
CDSS example respectively. They correspond to two 
unrecoverable 2-erasures (disk0, disk1) and (disk2, 
disk3) of the array code respectively. Theorem 1 can 
interpret almost all of 2-erasure array codes. 
 
3.2. Perfect one-factorizations 
 

A factor of a graph G=(V, E) is a spanning 
subgraph of G and a one-factor of G is a one-regular 
spanning subgraph of G. A factorization of G is a set 
of factors of G {F0, F1, …, Fk-1}, which are pair-wise 
edge disjoints - no two have a common edge - whose 
union is G. A one-factorization (1F) of G is a 
factorization of G consisting of only one-factor. If for 
any distinct pair Fi, Fj of factors, Fi∪Fj induces a 
Hamiltonian cycle, the 1F is called a perfect one-
factorization (P1F). There is a widely believed 
conjecture in graph theory: every complete graph with 
an even number of vertices has a P1F [14]. Graph 

theorists have proven that all even numbers less than 
54 are “P1F numbers” and have found many larger 
P1F numbers. A P1F of K2p can produce two B-Code 
instances with 2p-1 disks and 2p-2 respectively [11], 
thus B-Code is suitable for any size if the conjecture 
were proved. Fig 3.a shows a P1F of K5,5. 

 
Figure 4. CHLS, PDHLatin and PIMLatin. 

3.3. Latin squares 
 

For k ≤ n, a k*n Latin rectangle is a k*n matrix of 
entries chosen from some set of symbols of cardinality 
n, so that no symbol is duplicated within any row or 
any column. We use Ζn={0, 1, …, n-1} as the symbol 
set; it also can be used as the row (and column) 
number set. Let L(k, n) be the set of k*n Latin 
rectangles. Elements of L(n, n) are called Latin squares 
of order n. The symbol in row r, column c of a Latin 
rectangle R is denoted by Rrc. A Latin square of order n 
can be described by a set of n2 triples of the form (row, 
column, symbol). 

Each row r of a Latin rectangle R is the image of 
some permutation σr of Ζn, namely Rri=σr(i). Each pair 
of rows (r; s) defines a permutation by σr,s=σrσs

-1. 
Naturally σr,s=σs,r

-1. If σr,s consists of a single cycle for 
each pair of rows (r, s) in a Latin square L, we say L is 
row-hamiltonian. Similar concepts can be defined in 
terms of the column and symbol. In this paper, we are 
concerned with column-hamiltonian Latin squares, 
CHLS for short. Fig 4.a shows a CHLS of order 5, and 
σ1,3 of it. It is the Cayley table C5 of the cyclic group of 
order 5 [14]. 

There is a close relationship between CHLS and 
P1F [14]. There is a CHLS of order n iff Kn.n has a P1F. 
A CHLS L of order n can be transformed into a P1F F 
of Kn,n = (V, W, E) [14]: let V={vi | 0≤i≤n-1} and 
W={wi | 0≤i≤n-1}; let edge ( , )i k jv w F∈ , for all 
( , , )i j k L∈ . The reverse method converts a P1F of Kn,n 



into a CHLS of order n. This method can also create a 
transformation between LS and 1F. We can see that the 
cycles in σr,s of L correspond to cycles in Fr∪Fs. The 
P1F shown in Fig 3.a corresponds to C5. There is 
another conclusion [14]: if Kn+1 has a P1F, then so does 
Kn,n, but the converse is not true. Thus we have a 
conjecture: Kn,n has a P1F (CHLS of order n exists) for 
n=2 and all odd positive integers n. PIHLatin codes 
[12] are based on CHLS, thus have good parameter 
flexibility like B-CODE. 
 
4. New codes 
 
4.1. PDHLatin codes 
 

Given a CHLS L of order p, we can construct a 2-
erasure PDH code C with (p+1) disks. Like RDP, the 
first check disk of C is the horizontal parity disk. 
Because the second check disk is constructed by L, we 
call it a “Latin parity disk.” The algorithm is as follow. 
Algorithm 1. 
Input: L - a reduced (Li1=L1i=i) CHLS of order p. 
Output: A 2-erasure PDHLatin code C. 
Method: 
1. Delete the last row of L, then we get a (p-1)*p 

Latin rectangle R. 
2. Construct the ith data symbol on the jth data disk 

by ( , , ) ,  0 , 2i j k R i j p∈ ≤ ≤ −  - let it join in the 
ith horizontal parity symbol and the kth Latin 
parity symbol. Namely, it can be denoted by Dik. 

3. Construct the ith horizontal parity symbol by 
( , 1, ) ,  1 2i p k R i p− ∈ ≤ ≤ −  - let it participate 
in Qk. Thus it is denoted by Pik. 

Because the code height is p-1, symbols that 
correspond to (i, j, p-1) participate in only the ith 
horizontal parity group but none of the Latin parity 
groups. 
Theorem 2. PDHLatin codes constructed by algorithm 
1 can tolerate any 2-erasure. 
Proof: Suppose that F={F0, F1, …, Fp-1} is the P1F of 
Kp,p=(V, W, E) transformed from L. C is parity 
dependent, so it can’t be described by a simple graph 
directly. However, we can modify the graph 
representation: any “single-group” symbol is denoted 
by a vertex and any “double-group” symbol is denoted 
by an edge, whatever parity symbol or data symbol. 
Then C can be constructed by F as follow: 
1. Let Fj’=Fj-{(vp-1, wk)} for all ( 1, , )p j k L− ∈ . 

(Delete the last row of L) Then F’={F0’, F1’, …, 
Fp-1’} is a P1F of Kp-1,p = (V’, W, E’). 

2. Let Fj”= Fj’-{(vi, wj)}+{vi} for all ( , , 1)i j p L− ∈ , 
and F0”=F0’. (Delete the (p-1)th Latin parity 

group, and let some vertices denote data symbols) 
Then F”={F0”, F1” …, Fp-1”, W’} is a partition 
of Kp-1,p-1 = (V’, W’, E”) 

3. Construct jth data disk by Fj” for 0≤j≤p-2, 
horizontal parity disk by Fp-1”, and Latin parity 
disk by W’ - let any symbol that corresponds to 
an edge (vi, wj) participate in the ith horizontal 
parity group and the jth Latin parity group, and 
any symbol that corresponds to a vertex vi (wj) 
participate in only the ith horizontal parity group 
(the jth Latin parity group). 

Fig 3.b shows the F” transformed from the P1F to 
its left. F0” (the first data disk) contains nonadjacent p-
1 edges; W’ (Latin parity disk) contains p-1 vertices; 
and Fj” (1≤j≤p-1, other disks) is a mixed set of p-2 
nonadjacent edges and an isolated vertex from V’ that 
is adjacent to wp-1 originally. Theorem 1 still holds 
though what CPSS and CDSS represent maybe 
changed. The recoverability of single-erasures is trivial. 
We focus on 2-erasures. Suppose the ith disk and the jth 
disk fail (0≤i<j≤p), there are four cases: 
1. i=0, j=p (the first data disk and the Latin parity 

disk): F0”∪W’ consists of p-1 “lollipops,” and 
contains neither CPSS nor CDSS. 

2. 1≤i≤p-1, j=p (one of the data disks except the first 
and the Latin parity disk): Fi”∪W’ contains p-2 
lollipops and 2 isolated vertices, and contains 
neither CPSS nor CDSS. 

3. i=0, 1≤j≤p-1 (the first data disk and another disk 
except the Latin parity disk): Because F0∪Fj 
induces a hamiltonian cycle of Kp,p. F0”∪Fj” is 
converted from F0∪Fj by deleting (vp-1, wp-1), (vp-

1, wk) and (vk’, wp-1) and adding vk’, thus it consists 
of a path of Kp-1,p-1 from vk’ to wk with a length of 
2p-3 and one of its two endpoints vk’, contains 
neither CPSS nor CDSS. 

4. 1≤i, j≤p-1: Because Fi∪Fj induces a hamiltonian 
cycle of Kp,p and Fi”∪Fj” is transformed from  
Fi∪Fj by deleting (vp-1, wk), (vp-1, wl), (vk’, wp-1) 
and (vl’, wp-1) and adding vk’ and vl’, it consists of 
two paths of Kp-1,p-1 respectively from vk’ to wk 
and from vl’ to wl and their endpoints vk’ and vl’, 
contain neither CPSS nor CDSS.  □ 

Fig 3.c shows the examples of the four cases. 
We can see that the PDHLatin code based on C5 is 

just the 6-disk RDP code showed in Fig 1.c. The 
PDHLatin code based on Cp equals the (p+1)-disk 
RDP code when p is a prime number. PDHLatin is the 
superset of RDP. The PDHLatin code shown in Fig 4.c 
is based on the CHLS shown in Fig 4.b. It is not 
isomorphic to the 8-disk RDP code. This means that 
RDP is a proper subset of PDHLatin. This code shows 
the superiority of PDHLatin in structure variety. There 



are two heteromorphic 8-disk PDHLatin codes because 
there are two main classes containing CHLS of order 7 
[14]. However there is only one RDP instance for any 
size. Generally, as the size increases, the gap becomes 
wider. For example, there are at least 11 main classes 
containing CHLS of order 11 [15]. 

There are 37 heteromorphic 10-disk PDHLatin 
codes because there are 37 main classes containing 
CHLS of order 9 [14]. However, there is no 10-disk 
RDP code because 9 is not a prime number. This 
shows the advantage of PDHLatin over RDP in 
parameter flexibility. Although horizontally shortened 
RDP codes are suitable for any size, we will show that 
horizontal shortening is harmful to computational 
performance. In an EVENODD/RDP/PDHLatin code, 
the first data disk touches every parity group exactly 
once. Thus deleting it produces a code that performs 
equivalently. This means that standard PDHLatin code 
exists for any size if the P1F conjecture were proved. 
 
4.2. PIMLatin codes 
 

Swapping roles of each single-group data symbol 
with its parity symbol, we transform a PDHLatin code 
into a parity independent 2-erasure mixed code. We 
call this kind of codes PIMLatin. Fig 4.d shows an 8-
disk PIMLatin code transformed from the PDHLatin 
code shown in Fig 4.c. In fact, there exists a bijection 
between PIMLatin and PDHLatin. We omit the 
construction algorithm and the 2-erasure theorem 
because they are very similar to algorithm 1 and 
theorem 2 respectively. 

We can see that PIMLatin is MDS code. It achieves 
optimal computational performance. This is the most 
important advantage of PIMLatin over PDHLatin/RDP. 
PIMLain also outperforms RDP in parameter 
flexibility the way PDHLatin does. It can be regarded 
as a vertical generalization of RDP. 
 
4.3. Code shortening 
 

There are two general code extension strategies. 
The first is horizontal shortening - deleting some 

data disks (assuming they contain nothing but zeros). 
This operation is very suitable for horizontal codes. 
The fault tolerance remains the same and parameter 
flexibility improves after horizontal shortening. As 
mentioned above, the first data disk should be deleted 
first to get a code that performs equivalently. Every 
other disk touches only p-2 Latin parity groups and 
each parity group is missed exactly once. Thus the 
orders of deletion make no difference. 

It is difficult to horizontally shorten vertical/mixed 
codes, such as PIMLatin, because deleting a parity 
symbol makes its data symbols orphans. Bohossian et 
al. suggested a take-over method [16]. For PIMLatin, 
we can let the data symbol on the last column take over 
its horizontal parity group from the deleted parity 
symbol. This yields half PIMLatin, half PDHLatin 
codes. Because the partition of a shortened code is a 
subset of its original PIMLatin/PDHLatin code, thus 
the fault tolerance remains the same. Fig 5.a shows a 
5-disk horizontally shortened PIMLatin code based on 
the PIMLatin code shown in Fig 4.d. 

Horizontal shortening can be used reversely to 
solve storage system extension. We can initialize 
storage systems using shortened codes instead of 
standard codes. When new devices are added, we can 
simply zero them and let them play the roles of disks 
that are deleted in horizontal shortening. 

 
Figure 5. Code Shortening. 

Another strategy is vertical shortening - deleting 
some rows of the code and reserving all Latin parity 
symbols. Vertical shortening makes storage efficiency 
worse, but performance and reliability better. 
Considering the high cost-capacity and low cost-
reliability/performance of hard disks nowadays, it is 
worthwhile to do this shortening. WEAVER code [17] 
has practiced this idea. Its best storage efficiency is 
only 50%. But it has a very short parity group size and 
good locality, so it has good fault-mode performance 
especially for distributed storage applications. 

Fig 5.b shows a shortened PDHLatin code. We can 
see that its average group size is 3.86, which is far less 
than the system size. Thus, the per disk load increase 
under fault mode is far lower than that of standard 
PDHLatin codes. Moreover, the fault tolerance of this 
code is beyond 2. For example, the triple-erasure (d0, 
d1, d3) can be recovered. 

Vertical shortening makes horizontal codes 
irregular. This flaw can be alleviated by splitting check 
disks and repeating the code cycle rotationally like 
RAID5. Since non-MDS and irregularity are inevitable, 
parity dependent (RDP/PDHLatin) and “S” 
(EVENODD/PIHLatin) are unnecessary. We can bring 
the deleted Latin parity group back. For example, we 



can add Q5 into the code shown in Fig 5.b, and let P10 
be independent and D1 join Q5 again. This strategy 
unifies shortened PIHLatin and PDHLatin codes, and 
results in optimal computational performance. 

The greatest advantage of vertical shortening is that 
of providing a wide range of choices in 
performance/efficiency trade-off space with a unique 
construction method. Vertical shortening also spawns 
another useful method - constructing array codes via 
non-hamiltonian Latin squares (non-HLS). 
 
4.4. Constructing array codes by non-HLS 
 

The code shown in Fig 5.b is just constructed by 
deleting the last three rows of C6 though C6 is not a 
CHLS. The reason for this is that deleting the last three 
rows breaks all cycles in any pair of columns. In fact, 
we have a general code construction method via 
Cayley tables. The Cayley table Cn of order n can be 
described by ( , , ) ,0 , 1n ni j i j C i j n< + > ∈ ≤ ≤ − , where 
<x>m denotes x%m. We examine some properties of Cn 
first. 
Property 1. σj,k of Cn (0≤j<k≤n-1) consists of gcd(n, d) 
2l-long (l=n/gcd(n,d)) cycles. The ith cycle is (i, j, 
<i+j>n)-(i, k, <i+k>n)-(<i+k-j>n, j, <i+k>n)-(<i+k-j>n, k, 
<i+2k-j>n)-(<i+2k-2j>n, j, <i+2k-j>n)-...-(<i+(l-1)k-(l-
1)j>n, k, <i+lk-(l-1)j>n)-(<i+lk-lj>n, j, <i+lk-(l-1)j>n). 

d=k-j, and gcd(n, d) denotes the greater common 
divisor of n and d. According to the definitions of Cn 
and σ, it isn’t hard to conclude this property. Fig 5.c 
shows σ0,4 of C6. It has 2 6-long cycles because gcd(4, 
6)=2. Generally, σj,k contains at most n/pr(n) cycles 
(pr(n)-long each, when d=n/pr(n)) and at least pr(n) 
cycles (n/pr(n) -long each, when d=pr(n)), where pr(n) 
is the smallest prime divisor of n. This conclusion is 
coincident with the fact that Cn is a CHLS when n is a 
prime number. 
Property 2. Given Cn, for any 0≤i≤n-1, and any 
0≤r<s≤n-1, rows i, <i+1>n, ..., <i+n/pr(n)-1>n intersect 
all cycle of σr,s. And there exist 0≤r<s≤n-1 and 
0≤k≤gcd(n,s-r)-1, rows i, <i+1>n, ..., <i+n/pr(n)-2>n 
don’t intersect the kth cycle of σr,s. 

This property can be concluded by examining cycle 
patterns of all σr,s. It deduces property 3 directly. 
Property 3. Deleting any k (n/pr(n)≤k≤n-1) 
consecutive rows (with wrap-around) from Cn, we get 
a Latin rectangle in which for any 0≤r<s≤n-1, σr,s 
contains no cycles. 

These properties can be converted into 1F version 
according to LS-1F transformation described in 
Section 3. Therefore, deleting at least p/pr(p) rows 
from Cn, we can construct a 2-erasure PDHLatin code. 
The construction algorithm and the fault tolerance 

theorem are very similar to algorithm 1 and theorem 2 
respectively, so we omit them. 

This method greatly improves structure variety. For 
example, there are 37 main classes containing CHLS 
of order 9, but 19,270,853,541 main classes containing 
LS of order 9 [15]! This method also improves 
practical parameter flexibility. Even if the size of n 
isn’t a P1F number, we still can construct 
PDHLatin/PIMLatin/PIHLatin codes via Cn. 

This method can also generalize 2-erasure HoVer 
code [18]. HoVer is a class of multi-erasure mixed 
codes. It provides a wide range of choices in 
performance/efficiency trade-off space. We can show 
that HoVer codes are constructed by deleting two sets 
of consecutive rows from Cayley tables. The details 
are omitted for the paper length limit. 
 
5. Performance analysis 
 

Gibson et al present 5 metrics for erasure codes [5]: 
reliability, check disk overhead, update penalty, group 
size and extensibility. We compare the performance of 
PDHLatin/PIMLatin and other array codes in these 
aspects. In this section, n denotes the number of data 
disks, p denotes the order of CHLS, and h denotes the 
number of data rows. So standard and shortened codes 
can be denoted consistently by notation PDHLatinp,n,h. 
Thus p=n (p=n+1) and h=p-1 mean standard 
EVENODD/PIHLatin (RDP/PDHLatin). 

The check disk overhead of PDHLatinp,n,h/ 

PIMLatinp,n,h is 1
1

h p
nh h p

+ −
+ + −

. That is to say, standard 

codes are MDS codes, and achieve optimal check disk 
overhead. If h=p-1 (merely horizontally shortened), the 
MDS property remains. If n (h) is fixed, the check disk 
overhead increases as h (n) decreases. When n=p-1, 

the worst value is 
2 1

p
p −

. (Latin parity symbols 

degenerate into copies of data symbols). The global 
worst value is 2/3 (the code is just 3-way mirroring). 
Analysis of EVENODD and RDP is similar. 

As mentioned above, all of the codes can achieve 
optimal update penalty. 

Computational complexity is important though [5] 
didn’t discuss them. We examine standard codes first. 
Because encoding a parity group with g data symbols 
does g-1 XOR operations, per data word encoding 

XORs of 2-erasure EVENODD is 12
2p

−
−

, those of 

RDP/PDHLatin/PIMLatin are all 22
1p

−
−

 which is 

the optimum. Analysis of decoding cost is similar. Per 



word updating cost of 2-erasure EVENODD 

(PIHLatin), RDP (PDHLatin) is 44
1p

−
−

 and 

2

2 14
1 ( 1)p p

− +
− −

. That of PIMLatin is 3 - the 

optimal value. Note that as mentioned above, these 
codes all adopt “column implementation.” Thus the 
updating unit is a column. 

We now examine horizontally shortened codes. We 
only compared RDP and PDHLatin because the 
analysis of EVENODD and PIMLatin is similar. As 
mentioned above, deleting the first data disk shrinks 
every parity group exactly by 1. Deleting any other 
data disk shrinks every horizontal parity group by 1 
and p-2 Latin parity groups by 1 and all Latin parity 
groups are missed in turn. Thus, the per word encoding 
cost of a horizontally shortened RDP code RDPp,n,p-1 is 

1 1 12
1 ( 1)p n n p

− − −
− −

. That of a (n+1)-disk standard 

PDHLatin n+1,n,n is 22
n

− . The difference is 

1 1 1
1 ( 1)n p n p

− −
− −

 that increases as p-n increases. 

The performance gap is huge if n is far less than p. 
This will happen in practice. Note that RDP requires 
“column implementation.” So, p-1 must be a power of 
2 to avoid disk space waste. Moreover p must be a 
prime number. Qualified numbers are very few, 17 
followed by 257! 17 is too small, 257 is reasonable. 
Therefore, we have to construct a small RDP code 
from the 258-disk standard RDP code. By contrast, we 
can construct a small standard PDHLatin code directly. 
The performance gap approaches 10% when n is small. 
For heavily-loaded systems, that means a heavy extra 
computational load. Analysis of the decoding cost is 
similar. The per word updating cost of shortened RDP 

codes is 24
1p

−
−

, and that of standard PDHLatin 

codes is 2

2 14
n n

− + . We can see that the advantage of 

PDHLatin (PIHLatin) in parameter flexibility over 
RDP (EVENODD) benefits performance greatly. 

As mentioned above, vertically shortened PIHLatin 
(EVENODD) codes and PDHLatin (RDP) codes can 
be unified into one kind of 2-erasure parity 
independent codes in which each data symbol 
participates in exactly two parity groups. The per word 

encoding cost of this kind of code is 1 12
p h

− + . As h 

decreases, the performance improves. The per word 
updating cost of the unified codes is obviously 3 which 

is the optimum. The general case is similar to merely 
horizontal shortening, so we omit it. 

As mentioned above, vertical shortening provides a 
wide range of choices in performance/efficiency trade-
off space. When h is close to p-1, the codes have good 
storage efficiency. Deeply shortened codes have a 
small group size that benefits degraded- and 
reconstruction-mode performance especially for 
distributed storage applications because it decreases 
the interaction between failed disks and surviving 
disks (network communication between storage nodes). 
Generally, the average group size of the unified code is 
2 ( 1)h n

p h
+

+
. Obviously, as h decreases, the average 

group size decreases. As mentioned above, vertical 
shortening also improves reliability. 

As such, PDHLatin/PIMLatin’s performance is 
comparable with or higher than codes of the type, such 
as EVENODD/RDP. Moreover they are far superior to 
other codes in parameter flexibility and structure 
variety, which benefit performance. 
 
6. Conclusion 
 

In this paper, we have presented a new class of 2-
erasure horizontal codes with dependent parity 
symbols. We call it PDHLatin because it is based on 
column-hamiltonian Latin squares. We have proven 
that the PDHLatin codes are MDS codes. We also 
presented a new class of 2-erasure parity independent 
mixed codes based on CHLS - PIMLatin. There is a 
bijection between 2-erasure PDHLatin and 2-erasure 
PIMLatin. We have shown that their performance is 
comparable with RDP, and slightly better than 
EVENODD. And PIMLatin has outstanding updating 
performance. The new codes have perfect parameter 
flexibility and structure variety. We showed that these 
advantages improve performance. We also discussed 
code shortening. Horizontal shortening can improve 
parameter flexibility and can be used reversely to solve 
system extension. Vertical shortening can improve 
degraded- and reconstruction-mode performance 
especially for distributed storage systems. It also can 
improve parameter flexibility, structure variety and 
reliability. Borrowing ideas from vertical shortening, 
we present a 2-erasure array code construction method 
using non-hamiltonian Latin squares. 

The study of t-erasure PDHLatin codes for t > 2 is 
an important work for the future. We have found some 
instances. Fig 5.d shows a 3-erasure PDHLatin code 
based on C5 and a cyclic-shift transformation of C5. 
But the existence of multi-erasure PDHLatin codes 
needs a lot more work. Another important research 



direction is to study performance optimizing via the 
good structure variety of the Latin codes. Obviously, 
different Latin squares may lead to quite a different 
performance. Code shortening, especially vertical 
shortening (constructing codes by non-HLS), is worth 
further study too. In this paper, we only did simple 
performance analysis and compared the new codes 
with few other codes. Detailed performance analysis 
and reliability analysis (especially reliability of 
vertically shortened codes), and performance 
comparison with other codes (such as Liberation code 
[19]) are valuable works. We also plan to apply this 
methodology to other kinds of codes, such as X-code 
and Liberation code. Finally, implementation and 
performance testing are planned. 
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