
Generalizing RDP Codes Using the Combinatorial Method*

Wang Gang, Liu Xiaoguang, Lin Sheng, Xie Guangjun, Liu Jing
Dept. of Computer, College of Information Technical Science,

Nankai University, 300071, Tianjin, China
wgzwp@163.com

Abstract*

In this paper, we present PDHLatin - a new class of
2-erasure horizontal codes with dependent parity
symbols based on column-hamiltonian Latin squares
(CHLS). We prove that PDHLatin codes are MDS
codes. We also present a new class of 2-erasure parity
independent mixed codes based on CHLS - PIMLatin.
We show that the performance of the new codes is
comparable to or better than other codes of this kind.
They have perfect parameter flexibility and structure
variety that benefit performance. We also discuss code
shortening technologies that can improve parameter
flexibility, structure variety and reliability. Borrowing
ideas from vertical shortening, we develop a 2-erasure
array code construction method using non-hamiltonian
Latin squares.

1. Introduction

In recent years, as hard disks have grown greatly in
size and storage systems have grown in size and
complexity, it is more frequent that a failure of one
disk occurs in tandem with unreconstructed failures of
other disks or latent failures of blocks on other disks.
On a system using single-erasure correcting code such
as RAID5, this combination of failures leads to a
permanent data loss [1]. Hence, applications of multi-
erasure correcting codes have become more pervasive.
But all of the known multi-erasure coding techniques
have limitations [2]. This paper offers a class of 2-
erasure codes based on column-hamiltonian Latin
squares. The new codes outperform anything else of its
kind in terms of parameter flexibility and
computational performance.

* This paper is supported partly by the National High Technology
Research and Development Program of China (2008AA01Z401),
NSFC of China (90612001), RFDP of China (20070055054), and
Science and Technology Development Plan of Tianjin
(08JCYBJC13000)

The outline of this paper is as follows. In Section 2
we discuss related works. Section 3 is devoted to
introducing a graph representation of 2-erasure
correcting codes, Latin squares and perfect one-
factorizations. In Section 4 we present PDHLatin and
PIMLatin. Code shortening and constructing codes by
non-hamiltonian Latin squares are also discussed in
this section. A theoretical analysis is discussed in
Section 5. Conclusions and future works are presented
in Section 6.

2. Current multi-erasure codes

Plank’s tutorial on FAST’05 gives a great
introduction of erasure codes for storage applications
[2]. An erasure code for storage systems is a scheme
that encodes the content on n data disks into m check
disks so that the system is resilient to any t device
failures. Unfortunately, there is no consensus on the
best coding technique for n, m, t > 1.

The known multi-erasure codes typically fall into
one of three categories: Reed-Solomon codes, binary
linear codes or array codes. RS codes [3] are the only
known MDS codes for arbitrary n, m (=t). This means
optimal storage efficiency and optimal update penalty.
But the computational complexity is a serious problem
because Galois Field computation is used though
optimized algorithms have been developed [4].

Binary linear codes [5] are XOR-based, hence have
perfect computational complexity, but bad storage
efficiency is their inherent drawback. Fig 1.a shows a
2d-parity code [5], where Dij denotes a data symbol
that participates in parity symbols Pi and Qj. This
example illustrates the key idea of linear codes - divide
data symbols into several overlapping parity groups;
namely each data symbol participates in multiple
groups, so that multi erasures are tolerated.

Array codes arrange data/parity symbols into an
array, hence the name. EVENODD [6] is the first
MDS array code, perhaps also the most important one -

many subsequent array codes are similar to it and its
generalization [7], such as X-code [8], RDP [1],
STAR-code [9], etc. EVENODD is 2-erasure,
horizontal (some disks contain nothing but data
symbols, and the others contain only parity symbols.
The opposite is vertical codes in which the parity
symbols and the data symbols are stored together) and
parity independent (none of the parity symbols
participate in other parity groups). Fig 1.b shows the 7-
disk EVENODD code. A standard EVENDODD code
with p+2 disks consists of a (p-1)*p data array and a
(p-1)*2 parity array (where p must be a prime number).
The first check disk is a horizontal parity disk, and the
second is a skew diagonal parity disk. Di* denotes a
data symbol that participates in Pi and all Qs. Namely,
the sum S (over GF[2]) of all of these kind of symbols
is added into every diagonal parity symbol. Thus the
computational performance of EVENODD is non-
optimal. Moreover, in order to get optimal update
penalty (the number of parity units needs to be
modified when a data unit is modified), we must
implement each column instead of each symbol as a
stripe unit. Some literature has shown that these two
properties are the inherent drawbacks of horizontal
MDS array codes [7][10]. The p+2-disk EVENODD
code can be transformed from the p*p+2p 2d-parity
code. For example, the EVENODD code showed in
Fig 1.b can be constructed by deleting P4, Q4 and
D40~D44 from the 2d-parity code shown at the left. The
contributors of S - members of Q4 are dealt with
distinctly in order to gain MDS property.

Figure 1. Binary Linear Codes and Array Codes.

RDP is another important 2-erasure horizontal code.
Fig 1.c shows the 6-disk RDP code. A standard (p+1)-
disk RDP code can be described by a (p-1)*(p+1) code
array (where p must be a prime number). RDP can be
constructed from 2d-parity codes too. Its strategy for
the absence of the last Q is parity dependent. As Fig
1.c shows, p-2 horizontal parity symbols also
participate in diagonal parity groups, and p-2 data
symbols participate in only horizontal parity groups.
Such strategy leads to better computational

performance than EVENODD. One important
advantage of EVENODD and RDP is that they meet
the RAID6 specification. Moreover their coding
schemes are simple. Thus they are easy to implement.

Most array codes require a prime-related size.
Horizontal codes can alleviate this problem by
horizontal shortening, but such a transformation is
harmful to performance.

B-Code [11] is an interesting 2-erasure vertical
code constructed via perfect one-factorizations (P1F)
of complete graphs. It has no prime-size limitation
because of denseness of “P1F numbers.” PIHLatin
codes [12] are parity independent horizontal codes
based on column-hamiltonian Latin squares (CHLS). It
also has no prime size limitation.

In this paper, we mainly focus on RDP-like codes,
namely, horizontal codes with dependent parity
symbols. We call this kind of codes PDH codes (Parity
Dependent Horizontal codes). We present a new class
of PDH codes based on CHLS. We call it PDHLatin. It
is the superset of RDP and is superior to RDP in
parameter flexibility (applicability for different system
sizes) and structure variety (how many different
structures exist for a given size).

3. Related combinatorics knowledge

3.1. Graph representation of 2-erasure codes

Some literature refers to simple graph
representation of parity independent 2-erasure linear
codes in which each data symbol participates in
exactly two parity groups [5][11][13]: let each vertex
denote a parity symbol and each edge denote a data
symbol - the two endpoints of an edge are just the two
parity symbols of the data symbol. Then an array code
can be described by a graph partition if its underlying
linear code can be described by a simple graph. So, we
can study the construction of array codes through
graph partition. We have proven the following theorem
[13]:
Theorem 1. If an array code can be described by a
partition of a simple graph, it is a 2-erasure code iff the
union of any pair of subgraphs of the partition doesn’t
contain the following two types of structures:
1. A path and its two vertices. (Containing an edge

doesn’t mean containing its two vertices necessarily
because an edge and its two vertices are separate
objects - a data symbol and its two parity symbols)
We call this kind of unrecoverable erasure Closed
Parity Symbols Subset, CPSS for short.

2. A cycle. We call it Closed Data Symbols Subset,
CDSS for short.

Figure 2. Graph Representation.

Figure 3. Constructing PDHLatin Using P1F.

Fig 2.a shows the graph that corresponds to a 15-
disk 2d-parity code. Fig 2.b shows an array code based
on it. Fig 2.c and 2.d give a CPSS example and a
CDSS example respectively. They correspond to two
unrecoverable 2-erasures (disk0, disk1) and (disk2,
disk3) of the array code respectively. Theorem 1 can
interpret almost all of 2-erasure array codes.

3.2. Perfect one-factorizations

A factor of a graph G=(V, E) is a spanning
subgraph of G and a one-factor of G is a one-regular
spanning subgraph of G. A factorization of G is a set
of factors of G {F0, F1, …, Fk-1}, which are pair-wise
edge disjoints - no two have a common edge - whose
union is G. A one-factorization (1F) of G is a
factorization of G consisting of only one-factor. If for
any distinct pair Fi, Fj of factors, Fi∪Fj induces a
Hamiltonian cycle, the 1F is called a perfect one-
factorization (P1F). There is a widely believed
conjecture in graph theory: every complete graph with
an even number of vertices has a P1F [14]. Graph

theorists have proven that all even numbers less than
54 are “P1F numbers” and have found many larger
P1F numbers. A P1F of K2p can produce two B-Code
instances with 2p-1 disks and 2p-2 respectively [11],
thus B-Code is suitable for any size if the conjecture
were proved. Fig 3.a shows a P1F of K5,5.

Figure 4. CHLS, PDHLatin and PIMLatin.

3.3. Latin squares

For k ≤ n, a k*n Latin rectangle is a k*n matrix of
entries chosen from some set of symbols of cardinality
n, so that no symbol is duplicated within any row or
any column. We use Ζn={0, 1, …, n-1} as the symbol
set; it also can be used as the row (and column)
number set. Let L(k, n) be the set of k*n Latin
rectangles. Elements of L(n, n) are called Latin squares
of order n. The symbol in row r, column c of a Latin
rectangle R is denoted by Rrc. A Latin square of order n
can be described by a set of n2 triples of the form (row,
column, symbol).

Each row r of a Latin rectangle R is the image of
some permutation σr of Ζn, namely Rri=σr(i). Each pair
of rows (r; s) defines a permutation by σr,s=σrσs

-1.
Naturally σr,s=σs,r

-1. If σr,s consists of a single cycle for
each pair of rows (r, s) in a Latin square L, we say L is
row-hamiltonian. Similar concepts can be defined in
terms of the column and symbol. In this paper, we are
concerned with column-hamiltonian Latin squares,
CHLS for short. Fig 4.a shows a CHLS of order 5, and
σ1,3 of it. It is the Cayley table C5 of the cyclic group of
order 5 [14].

There is a close relationship between CHLS and
P1F [14]. There is a CHLS of order n iff Kn.n has a P1F.
A CHLS L of order n can be transformed into a P1F F
of Kn,n = (V, W, E) [14]: let V={vi | 0≤i≤n-1} and
W={wi | 0≤i≤n-1}; let edge (,)i k jv w F∈ , for all
(, ,)i j k L∈ . The reverse method converts a P1F of Kn,n

into a CHLS of order n. This method can also create a
transformation between LS and 1F. We can see that the
cycles in σr,s of L correspond to cycles in Fr∪Fs. The
P1F shown in Fig 3.a corresponds to C5. There is
another conclusion [14]: if Kn+1 has a P1F, then so does
Kn,n, but the converse is not true. Thus we have a
conjecture: Kn,n has a P1F (CHLS of order n exists) for
n=2 and all odd positive integers n. PIHLatin codes
[12] are based on CHLS, thus have good parameter
flexibility like B-CODE.

4. New codes

4.1. PDHLatin codes

Given a CHLS L of order p, we can construct a 2-
erasure PDH code C with (p+1) disks. Like RDP, the
first check disk of C is the horizontal parity disk.
Because the second check disk is constructed by L, we
call it a “Latin parity disk.” The algorithm is as follow.
Algorithm 1.
Input: L - a reduced (Li1=L1i=i) CHLS of order p.
Output: A 2-erasure PDHLatin code C.
Method:
1. Delete the last row of L, then we get a (p-1)*p

Latin rectangle R.
2. Construct the ith data symbol on the jth data disk

by (, ,) , 0 , 2i j k R i j p∈ ≤ ≤ − - let it join in the
ith horizontal parity symbol and the kth Latin
parity symbol. Namely, it can be denoted by Dik.

3. Construct the ith horizontal parity symbol by
(, 1,) , 1 2i p k R i p− ∈ ≤ ≤ − - let it participate
in Qk. Thus it is denoted by Pik.

Because the code height is p-1, symbols that
correspond to (i, j, p-1) participate in only the ith
horizontal parity group but none of the Latin parity
groups.
Theorem 2. PDHLatin codes constructed by algorithm
1 can tolerate any 2-erasure.
Proof: Suppose that F={F0, F1, …, Fp-1} is the P1F of
Kp,p=(V, W, E) transformed from L. C is parity
dependent, so it can’t be described by a simple graph
directly. However, we can modify the graph
representation: any “single-group” symbol is denoted
by a vertex and any “double-group” symbol is denoted
by an edge, whatever parity symbol or data symbol.
Then C can be constructed by F as follow:
1. Let Fj’=Fj-{(vp-1, wk)} for all (1, ,)p j k L− ∈ .

(Delete the last row of L) Then F’={F0’, F1’, …,
Fp-1’} is a P1F of Kp-1,p = (V’, W, E’).

2. Let Fj”= Fj’-{(vi, wj)}+{vi} for all (, , 1)i j p L− ∈ ,
and F0”=F0’. (Delete the (p-1)th Latin parity

group, and let some vertices denote data symbols)
Then F”={F0”, F1” …, Fp-1”, W’} is a partition
of Kp-1,p-1 = (V’, W’, E”)

3. Construct jth data disk by Fj” for 0≤j≤p-2,
horizontal parity disk by Fp-1”, and Latin parity
disk by W’ - let any symbol that corresponds to
an edge (vi, wj) participate in the ith horizontal
parity group and the jth Latin parity group, and
any symbol that corresponds to a vertex vi (wj)
participate in only the ith horizontal parity group
(the jth Latin parity group).

Fig 3.b shows the F” transformed from the P1F to
its left. F0” (the first data disk) contains nonadjacent p-
1 edges; W’ (Latin parity disk) contains p-1 vertices;
and Fj” (1≤j≤p-1, other disks) is a mixed set of p-2
nonadjacent edges and an isolated vertex from V’ that
is adjacent to wp-1 originally. Theorem 1 still holds
though what CPSS and CDSS represent maybe
changed. The recoverability of single-erasures is trivial.
We focus on 2-erasures. Suppose the ith disk and the jth
disk fail (0≤i<j≤p), there are four cases:
1. i=0, j=p (the first data disk and the Latin parity

disk): F0”∪W’ consists of p-1 “lollipops,” and
contains neither CPSS nor CDSS.

2. 1≤i≤p-1, j=p (one of the data disks except the first
and the Latin parity disk): Fi”∪W’ contains p-2
lollipops and 2 isolated vertices, and contains
neither CPSS nor CDSS.

3. i=0, 1≤j≤p-1 (the first data disk and another disk
except the Latin parity disk): Because F0∪Fj
induces a hamiltonian cycle of Kp,p. F0”∪Fj” is
converted from F0∪Fj by deleting (vp-1, wp-1), (vp-

1, wk) and (vk’, wp-1) and adding vk’, thus it consists
of a path of Kp-1,p-1 from vk’ to wk with a length of
2p-3 and one of its two endpoints vk’, contains
neither CPSS nor CDSS.

4. 1≤i, j≤p-1: Because Fi∪Fj induces a hamiltonian
cycle of Kp,p and Fi”∪Fj” is transformed from
Fi∪Fj by deleting (vp-1, wk), (vp-1, wl), (vk’, wp-1)
and (vl’, wp-1) and adding vk’ and vl’, it consists of
two paths of Kp-1,p-1 respectively from vk’ to wk
and from vl’ to wl and their endpoints vk’ and vl’,
contain neither CPSS nor CDSS. □

Fig 3.c shows the examples of the four cases.
We can see that the PDHLatin code based on C5 is

just the 6-disk RDP code showed in Fig 1.c. The
PDHLatin code based on Cp equals the (p+1)-disk
RDP code when p is a prime number. PDHLatin is the
superset of RDP. The PDHLatin code shown in Fig 4.c
is based on the CHLS shown in Fig 4.b. It is not
isomorphic to the 8-disk RDP code. This means that
RDP is a proper subset of PDHLatin. This code shows
the superiority of PDHLatin in structure variety. There

are two heteromorphic 8-disk PDHLatin codes because
there are two main classes containing CHLS of order 7
[14]. However there is only one RDP instance for any
size. Generally, as the size increases, the gap becomes
wider. For example, there are at least 11 main classes
containing CHLS of order 11 [15].

There are 37 heteromorphic 10-disk PDHLatin
codes because there are 37 main classes containing
CHLS of order 9 [14]. However, there is no 10-disk
RDP code because 9 is not a prime number. This
shows the advantage of PDHLatin over RDP in
parameter flexibility. Although horizontally shortened
RDP codes are suitable for any size, we will show that
horizontal shortening is harmful to computational
performance. In an EVENODD/RDP/PDHLatin code,
the first data disk touches every parity group exactly
once. Thus deleting it produces a code that performs
equivalently. This means that standard PDHLatin code
exists for any size if the P1F conjecture were proved.

4.2. PIMLatin codes

Swapping roles of each single-group data symbol
with its parity symbol, we transform a PDHLatin code
into a parity independent 2-erasure mixed code. We
call this kind of codes PIMLatin. Fig 4.d shows an 8-
disk PIMLatin code transformed from the PDHLatin
code shown in Fig 4.c. In fact, there exists a bijection
between PIMLatin and PDHLatin. We omit the
construction algorithm and the 2-erasure theorem
because they are very similar to algorithm 1 and
theorem 2 respectively.

We can see that PIMLatin is MDS code. It achieves
optimal computational performance. This is the most
important advantage of PIMLatin over PDHLatin/RDP.
PIMLain also outperforms RDP in parameter
flexibility the way PDHLatin does. It can be regarded
as a vertical generalization of RDP.

4.3. Code shortening

There are two general code extension strategies.
The first is horizontal shortening - deleting some

data disks (assuming they contain nothing but zeros).
This operation is very suitable for horizontal codes.
The fault tolerance remains the same and parameter
flexibility improves after horizontal shortening. As
mentioned above, the first data disk should be deleted
first to get a code that performs equivalently. Every
other disk touches only p-2 Latin parity groups and
each parity group is missed exactly once. Thus the
orders of deletion make no difference.

It is difficult to horizontally shorten vertical/mixed
codes, such as PIMLatin, because deleting a parity
symbol makes its data symbols orphans. Bohossian et
al. suggested a take-over method [16]. For PIMLatin,
we can let the data symbol on the last column take over
its horizontal parity group from the deleted parity
symbol. This yields half PIMLatin, half PDHLatin
codes. Because the partition of a shortened code is a
subset of its original PIMLatin/PDHLatin code, thus
the fault tolerance remains the same. Fig 5.a shows a
5-disk horizontally shortened PIMLatin code based on
the PIMLatin code shown in Fig 4.d.

Horizontal shortening can be used reversely to
solve storage system extension. We can initialize
storage systems using shortened codes instead of
standard codes. When new devices are added, we can
simply zero them and let them play the roles of disks
that are deleted in horizontal shortening.

Figure 5. Code Shortening.

Another strategy is vertical shortening - deleting
some rows of the code and reserving all Latin parity
symbols. Vertical shortening makes storage efficiency
worse, but performance and reliability better.
Considering the high cost-capacity and low cost-
reliability/performance of hard disks nowadays, it is
worthwhile to do this shortening. WEAVER code [17]
has practiced this idea. Its best storage efficiency is
only 50%. But it has a very short parity group size and
good locality, so it has good fault-mode performance
especially for distributed storage applications.

Fig 5.b shows a shortened PDHLatin code. We can
see that its average group size is 3.86, which is far less
than the system size. Thus, the per disk load increase
under fault mode is far lower than that of standard
PDHLatin codes. Moreover, the fault tolerance of this
code is beyond 2. For example, the triple-erasure (d0,
d1, d3) can be recovered.

Vertical shortening makes horizontal codes
irregular. This flaw can be alleviated by splitting check
disks and repeating the code cycle rotationally like
RAID5. Since non-MDS and irregularity are inevitable,
parity dependent (RDP/PDHLatin) and “S”
(EVENODD/PIHLatin) are unnecessary. We can bring
the deleted Latin parity group back. For example, we

can add Q5 into the code shown in Fig 5.b, and let P10
be independent and D1 join Q5 again. This strategy
unifies shortened PIHLatin and PDHLatin codes, and
results in optimal computational performance.

The greatest advantage of vertical shortening is that
of providing a wide range of choices in
performance/efficiency trade-off space with a unique
construction method. Vertical shortening also spawns
another useful method - constructing array codes via
non-hamiltonian Latin squares (non-HLS).

4.4. Constructing array codes by non-HLS

The code shown in Fig 5.b is just constructed by
deleting the last three rows of C6 though C6 is not a
CHLS. The reason for this is that deleting the last three
rows breaks all cycles in any pair of columns. In fact,
we have a general code construction method via
Cayley tables. The Cayley table Cn of order n can be
described by (, ,) ,0 , 1n ni j i j C i j n< + > ∈ ≤ ≤ − , where
<x>m denotes x%m. We examine some properties of Cn
first.
Property 1. σj,k of Cn (0≤j<k≤n-1) consists of gcd(n, d)
2l-long (l=n/gcd(n,d)) cycles. The ith cycle is (i, j,
<i+j>n)-(i, k, <i+k>n)-(<i+k-j>n, j, <i+k>n)-(<i+k-j>n, k,
<i+2k-j>n)-(<i+2k-2j>n, j, <i+2k-j>n)-...-(<i+(l-1)k-(l-
1)j>n, k, <i+lk-(l-1)j>n)-(<i+lk-lj>n, j, <i+lk-(l-1)j>n).

d=k-j, and gcd(n, d) denotes the greater common
divisor of n and d. According to the definitions of Cn
and σ, it isn’t hard to conclude this property. Fig 5.c
shows σ0,4 of C6. It has 2 6-long cycles because gcd(4,
6)=2. Generally, σj,k contains at most n/pr(n) cycles
(pr(n)-long each, when d=n/pr(n)) and at least pr(n)
cycles (n/pr(n) -long each, when d=pr(n)), where pr(n)
is the smallest prime divisor of n. This conclusion is
coincident with the fact that Cn is a CHLS when n is a
prime number.
Property 2. Given Cn, for any 0≤i≤n-1, and any
0≤r<s≤n-1, rows i, <i+1>n, ..., <i+n/pr(n)-1>n intersect
all cycle of σr,s. And there exist 0≤r<s≤n-1 and
0≤k≤gcd(n,s-r)-1, rows i, <i+1>n, ..., <i+n/pr(n)-2>n
don’t intersect the kth cycle of σr,s.

This property can be concluded by examining cycle
patterns of all σr,s. It deduces property 3 directly.
Property 3. Deleting any k (n/pr(n)≤k≤n-1)
consecutive rows (with wrap-around) from Cn, we get
a Latin rectangle in which for any 0≤r<s≤n-1, σr,s
contains no cycles.

These properties can be converted into 1F version
according to LS-1F transformation described in
Section 3. Therefore, deleting at least p/pr(p) rows
from Cn, we can construct a 2-erasure PDHLatin code.
The construction algorithm and the fault tolerance

theorem are very similar to algorithm 1 and theorem 2
respectively, so we omit them.

This method greatly improves structure variety. For
example, there are 37 main classes containing CHLS
of order 9, but 19,270,853,541 main classes containing
LS of order 9 [15]! This method also improves
practical parameter flexibility. Even if the size of n
isn’t a P1F number, we still can construct
PDHLatin/PIMLatin/PIHLatin codes via Cn.

This method can also generalize 2-erasure HoVer
code [18]. HoVer is a class of multi-erasure mixed
codes. It provides a wide range of choices in
performance/efficiency trade-off space. We can show
that HoVer codes are constructed by deleting two sets
of consecutive rows from Cayley tables. The details
are omitted for the paper length limit.

5. Performance analysis

Gibson et al present 5 metrics for erasure codes [5]:
reliability, check disk overhead, update penalty, group
size and extensibility. We compare the performance of
PDHLatin/PIMLatin and other array codes in these
aspects. In this section, n denotes the number of data
disks, p denotes the order of CHLS, and h denotes the
number of data rows. So standard and shortened codes
can be denoted consistently by notation PDHLatinp,n,h.
Thus p=n (p=n+1) and h=p-1 mean standard
EVENODD/PIHLatin (RDP/PDHLatin).

The check disk overhead of PDHLatinp,n,h/

PIMLatinp,n,h is 1
1

h p
nh h p

+ −
+ + −

. That is to say, standard

codes are MDS codes, and achieve optimal check disk
overhead. If h=p-1 (merely horizontally shortened), the
MDS property remains. If n (h) is fixed, the check disk
overhead increases as h (n) decreases. When n=p-1,

the worst value is
2 1

p
p −

. (Latin parity symbols

degenerate into copies of data symbols). The global
worst value is 2/3 (the code is just 3-way mirroring).
Analysis of EVENODD and RDP is similar.

As mentioned above, all of the codes can achieve
optimal update penalty.

Computational complexity is important though [5]
didn’t discuss them. We examine standard codes first.
Because encoding a parity group with g data symbols
does g-1 XOR operations, per data word encoding

XORs of 2-erasure EVENODD is 12
2p

−
−

, those of

RDP/PDHLatin/PIMLatin are all 22
1p

−
−

 which is

the optimum. Analysis of decoding cost is similar. Per

word updating cost of 2-erasure EVENODD

(PIHLatin), RDP (PDHLatin) is 44
1p

−
−

 and

2

2 14
1 (1)p p

− +
− −

. That of PIMLatin is 3 - the

optimal value. Note that as mentioned above, these
codes all adopt “column implementation.” Thus the
updating unit is a column.

We now examine horizontally shortened codes. We
only compared RDP and PDHLatin because the
analysis of EVENODD and PIMLatin is similar. As
mentioned above, deleting the first data disk shrinks
every parity group exactly by 1. Deleting any other
data disk shrinks every horizontal parity group by 1
and p-2 Latin parity groups by 1 and all Latin parity
groups are missed in turn. Thus, the per word encoding
cost of a horizontally shortened RDP code RDPp,n,p-1 is

1 1 12
1 (1)p n n p

− − −
− −

. That of a (n+1)-disk standard

PDHLatin n+1,n,n is 22
n

− . The difference is

1 1 1
1 (1)n p n p

− −
− −

 that increases as p-n increases.

The performance gap is huge if n is far less than p.
This will happen in practice. Note that RDP requires
“column implementation.” So, p-1 must be a power of
2 to avoid disk space waste. Moreover p must be a
prime number. Qualified numbers are very few, 17
followed by 257! 17 is too small, 257 is reasonable.
Therefore, we have to construct a small RDP code
from the 258-disk standard RDP code. By contrast, we
can construct a small standard PDHLatin code directly.
The performance gap approaches 10% when n is small.
For heavily-loaded systems, that means a heavy extra
computational load. Analysis of the decoding cost is
similar. The per word updating cost of shortened RDP

codes is 24
1p

−
−

, and that of standard PDHLatin

codes is 2

2 14
n n

− + . We can see that the advantage of

PDHLatin (PIHLatin) in parameter flexibility over
RDP (EVENODD) benefits performance greatly.

As mentioned above, vertically shortened PIHLatin
(EVENODD) codes and PDHLatin (RDP) codes can
be unified into one kind of 2-erasure parity
independent codes in which each data symbol
participates in exactly two parity groups. The per word

encoding cost of this kind of code is 1 12
p h

− + . As h

decreases, the performance improves. The per word
updating cost of the unified codes is obviously 3 which

is the optimum. The general case is similar to merely
horizontal shortening, so we omit it.

As mentioned above, vertical shortening provides a
wide range of choices in performance/efficiency trade-
off space. When h is close to p-1, the codes have good
storage efficiency. Deeply shortened codes have a
small group size that benefits degraded- and
reconstruction-mode performance especially for
distributed storage applications because it decreases
the interaction between failed disks and surviving
disks (network communication between storage nodes).
Generally, the average group size of the unified code is
2 (1)h n

p h
+

+
. Obviously, as h decreases, the average

group size decreases. As mentioned above, vertical
shortening also improves reliability.

As such, PDHLatin/PIMLatin’s performance is
comparable with or higher than codes of the type, such
as EVENODD/RDP. Moreover they are far superior to
other codes in parameter flexibility and structure
variety, which benefit performance.

6. Conclusion

In this paper, we have presented a new class of 2-
erasure horizontal codes with dependent parity
symbols. We call it PDHLatin because it is based on
column-hamiltonian Latin squares. We have proven
that the PDHLatin codes are MDS codes. We also
presented a new class of 2-erasure parity independent
mixed codes based on CHLS - PIMLatin. There is a
bijection between 2-erasure PDHLatin and 2-erasure
PIMLatin. We have shown that their performance is
comparable with RDP, and slightly better than
EVENODD. And PIMLatin has outstanding updating
performance. The new codes have perfect parameter
flexibility and structure variety. We showed that these
advantages improve performance. We also discussed
code shortening. Horizontal shortening can improve
parameter flexibility and can be used reversely to solve
system extension. Vertical shortening can improve
degraded- and reconstruction-mode performance
especially for distributed storage systems. It also can
improve parameter flexibility, structure variety and
reliability. Borrowing ideas from vertical shortening,
we present a 2-erasure array code construction method
using non-hamiltonian Latin squares.

The study of t-erasure PDHLatin codes for t > 2 is
an important work for the future. We have found some
instances. Fig 5.d shows a 3-erasure PDHLatin code
based on C5 and a cyclic-shift transformation of C5.
But the existence of multi-erasure PDHLatin codes
needs a lot more work. Another important research

direction is to study performance optimizing via the
good structure variety of the Latin codes. Obviously,
different Latin squares may lead to quite a different
performance. Code shortening, especially vertical
shortening (constructing codes by non-HLS), is worth
further study too. In this paper, we only did simple
performance analysis and compared the new codes
with few other codes. Detailed performance analysis
and reliability analysis (especially reliability of
vertically shortened codes), and performance
comparison with other codes (such as Liberation code
[19]) are valuable works. We also plan to apply this
methodology to other kinds of codes, such as X-code
and Liberation code. Finally, implementation and
performance testing are planned.

Acknowledgement
Many thanks to Dr. Ian. M. Wanless for his kind help
regarding the knowledge of Latin squares!

References

[1] P. Corbett, B. English, A. Goel, T. Grcanac, S. Kleiman,

J. Leong and S. Sankar, “Row-Diagonal Parity for
Double Disk Failure Correction”, In Proceedings of the
3th USENIX Conference on File and Storage
Technologies, San Francisco, CA, USA, Mar, 2004,
pp.1-14.

[2] J. S. Plank, “Erasure Codes for Storage Applications”,
Tutorial of the 4th Usenix Conference on File and
Storage Technologies, San Francisco, CA, Dec, 2005.

[3] J. S. Plank, “A Tutorial on Reed-Solomon Coding for
Fault-Tolerance in RAID-like Systems”, Software -
Practice & Experience, Vol. 27, No.9, Sep, 1997,
pp.995-1012.

[4] J. S. Plank and Lihao Xu, “Optimizing Cauchy Reed-
Solomon Codes for Fault-Tolerant Network Storage
Applications”, In Proceedings of the 5th IEEE
International Symposium on Network Computing and
Applications, Cambridge, MA, Jul, 2006, pp.173-180.

[5] Lisa Hellerstein, Garth A. Gibson, Richard M. Karp,
Randy H. Katz and David A. Patterson, “Coding
techniques for handling failures in large disk arrays”,
Algorithmica, Vol. 12, No. 2/3, Aug,1994, pp.182-208.

[6] M. Blaum, J. Brady, J. Bruck, J. Menon, “EVENODD:
an efficient scheme for tolerating double disk failures
in RAID architectures”, IEEE Trans. on Computers,
Vol. 44, No. 2, pp. Feb, 1995, 192-202.

[7] M. Blaum, J. Bruck, and A. Vardy, “MDS array codes
with independent parity symbols”, IEEE Trans. on
Information Theory, Vol. 42, No. 2, Mar, 1996, pp.
529-542.

[8] L. Xu and J. Bruck, “X-Code: MDS Array Codes with
Optimal Encoding”, IEEE Trans. on Information
Theory, Vol. 45, No. 1, Jan, 1999, pp.272-276.

[9] Cheng Huang, Lihao Xu, “STAR: An Efficient Coding
Scheme for Correcting Triple Storage Node Failures”,
In Proceedings of the 4th USENIX Conference on File
and Storage Technologies, San Francisco, Dec, 2005,
pp.197-210.

[10] Wang Gang, Dong Sha-sha, Liu Xiao-guang, Lin Sheng,
Liu Jing, “Construct double-erasure-correcting Data
Layout Using P1F”, ACTA ELECTRONICA SINICA,
Vol. 34, No. 12A, 2006, pp.2447-2450.

[11] L. Xu, V. Bohossian, J. Bruck, and D.G. Wagner,
“Low-Density MDS Codes and Factors of Complete
Graphs”, IEEE Trans. on Information Theory, Vol. 45,
No. 6, Sep, 1999, pp.1817-1826.

[12] Gang Wang, Sheng Lin, Xiaoguang Liu, Guangjun Xie,
Jing Liu, “Combinatorial Constructions of Multi-
Erasure-Correcting Codes with Independent Parity
Symbols for Storage Systems”, IEEE PRDC 2007,
Melbourne, Victoria, Australia, Dec, 2007, pp. 61-68.

[13] Zhou Jie, Wang Gang, Liu Xiaoguang, Liu Jing, “The
Study of Graph Decompositions and Placement of
Parity and Data to Tolerate Two Failures in Disk
Arrays: Conditions and Existance”, Chinese Journal of
Computer, Vol. 26, No. 10, Oct, 2003, pp.1379-1386.

[14] I. M. Wanless, “Perfect factorisations of complete
bipartite graphs and Latin squares without proper
subrectangles”, Electron. J. Combin, Vol. 6, 1999, R9.

[15] Charles. J. Colbourn, Jeffrey H. Dinitz, et al,
“Handbook of Combinatorial Designs (Second
Edition)” , CRC Press, 2007.

[16] V. Bohossian, J. Bruck, Shortening Array Codes and
the Perfect 1-Factorization Conjecture, 2006 IEEE
International Symposium on Information Theory, pp.
2799-2803, Seattle, WA, USA.

[17] J. L. Hafner, “WEAVER Codes: Highly Fault Tolerant
Erasure Codes for Storage Systems”, In Proceedings of
the 4th Usenix Conference on File and Storage
Technologies, San Francisco, Dec, 2005, pp.211-224.

[18] James Lee Hafner, "HoVer Erasure Codes For Disk
Arrays," International Conference on Dependable
Systems and Networks (DSN'06), Philadelphia, PA,
USA, Jun, 2006, pp. 217-226.

[19] James S. Plank, “The RAID-6 Liberation Codes”, 6th
USENIX Conference on File and Storage Technologies,
San Francisco, 2008, pp. 97–110.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

