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Abstract 
 

Ontology is increasingly seen as a key factor of 
semantic web. It makes information on the web more 
readily accessed and processed by applications. 
Ontologies mapping is required for combining 
independent and heterogeneous ontologies, which 
implements the interoperability across semantic web 
applications. This paper presents a new approach for 
ontologies mapping. We introduce the inference 
techniques of description logic, and transform the 
ontologies mapping from the computing of linguistic or 
structural similarities to the logical reasoning between 
concepts of different ontologies, implementing the 
semantic mapping of ontologies. Experiments show our 
approach outperforms the CTXMATCH algorithm in 
recall and precision when the rich relations exist 
between concepts of ontologies. 
 
1. Introduction 
 

The Semantic Web community has achieved a good 
standing within the last years. The aim of Semantic 
web is to make information on the web more readily 
accessed and processed by applications or automated 
tools (i.e., automated agents). This is to be done 
through representing the content of data with ontology. 
Ontology has been defined as “explicit 
conceptualization of a domain”[1], in which 
information is organized into taxonomies of concepts. 
The concepts are labeled by terminologies, and they 
provided model entities of interest in the domain and 
are connected by relations(non-taxonomical relations). 
Each concept denotes a set of instances and represents 
the meaning of them. Unfortunately, given the 
decentralized nature of semantic web development, it 
is likely that there will be an explosion in the number 

of ontology. Many of them will use different 
terminologies and structures to describe the same or 
related domains. Information processing across 
ontologies is not possible without knowing the 
semantic mapping between their elements. Thus, 
semantic mapping of different ontologies becomes a 
core question. 

Currently, ontology mapping is largely performed 
manually by domain experts, therefore a time-
consuming, tedious and error-prone process[2]. In this 
paper we describe an approach, which applies 
inference technique of description logic to automatic 
ontology mapping. Our approach is based on the 
CTXMATCH algorithm proposed in [3], which is a 
propositional logic based algorithm. However, given 
the ontology, which defines diverse relations and 
restrictions among concepts, the power of description 
and reasoning of propositional logic is not enough. Our 
work aims to uses description logic to describe the 
concepts and make explicit the meaning of concepts in 
the ontology. The semantic mapping of ontologies is 
deduced via inference of description logic. 

This paper is organized as follows. The related 
work about ontology mapping is provided in Section 2. 
Section 3 presents our approach of ontology mapping. 
And Section 4 presents an experiment evaluation. 
Finally, Section 5 reports conclusions. 
 
2. Related work 
 

Numerous researchers have addressed the ontology 
mapping problem. Their methods come from different 
disciplines such as data analysis, machine learning, 
language engineering, statistics or knowledge 
engineering. To achieve high accuracy for a large 
variety of ontologies, a single strategy may be unlikely 
to be successful. Hence, to combine different 
approaches is an effective way[2]. Good survey 



through recent years are provided in [4][5][6]. the 
survey of [5] focuses on schema matching, and [4][6] 
survey a set of methods, systems and tools related to 
ontology mapping. We mainly show the CTXMATCH 
algorithm that is related to the approach introduced in 
this paper in the next paragraph. 

CTXMATCH is an algorithm for discovering 
semantic mappings across hierarchical classifications 
(HCs) using logical deduction. CTXMATCH takes two 
inputs H1 and H2 in HCs, and for each pair of concepts 
C1 ∈H1 , C2∈H2, the mapping problem with the 
relations (⊇ ,⊆ , ≡ , *, and ⊥ ) between them is 
translated into a propositional formula of form and 
checked for validity. The contribution of the 
CTXMATCH is that mappings can be assigned a 
clearly defined model theoretic semantics and that 
structural, lexical, and domain knowledge are 
considered. But there is a limited in the CTXMATCH 
algorithm: it only deals with unary predicates, and for 
the binary predicates, such as properties or roles, it can 
not handle[5]. In fact, it is only an algorithm of schema 
matching. The method proposed in this paper extends 
the CTXMATCH algorithm. We exploit the expressive 
power of description logic and its efficient reasoning 
techniques to implement ontology mapping. 
 
3. Ontology mapping with inference of DL 
  
3.1 Ontology mapping 
 

Ontology mapping takes two ontologies as inputs 
and finds semantic relationships between the entities 
(concepts, relations, etc.) in the two input ontologies[7]. 
In this paper, we focus on finding one-to-one mapping 
between concepts of ontologies. Successfully mapping 
between concepts will greatly aid in mapping between 
other entities of the ontology. The specific problem 
that we consider is as follows: given two ontologies O1 
and O2, semantic mapping between them means: for 
each pair of concepts from O1 and O2 respectively, we 
try to find the semantic relationships between them. 
Four semantic relationships can be held by concepts C1 
and C2 in our approach, which are shown in the 
following: 
♦ C1⊆C2 means C1 is less general than C2, i.e. the 

meaning of C1 is included by the meaning of C2; 
♦ C1⊇C2 means C1 is more general than C2, i.e. the 

meaning of C1 includes the meaning of C2; 
♦ C1≡C2 means C1 is equivalent to C2, i.e. C1 and C2 

have the same meaning; 
♦ C1⊥C2 means C1 is disjoint from C2, i.e. C1 and C2 

have not the semantic relationships. 
 

3.2 Description Logic 
 
We follow the approach of semantic coordination 

described in [3], and use logic formulas to represent 
the concepts of ontologies. But different to the [3] that 
present the logic formulas with propositional logic, we 
use Description logic(DL)[8] to construct the logic 
formulas.  

DL is a family of knowledge representation 
languages that can been used to represent the 
knowledge in a structured and formally well 
understood way. DL equips with a formal, logic based 
semantics, and it can describe the relations and 
restrictions over concepts, which can not be done by 
propositional logic. For example, for the concept 
“Network” in the ontology O2 showed in Figure 1, it 
has relations “teachBy” and “teachFor”, so its logical 
formulas of DL logic_formula(Network) is showed as 
follows: 
logic_formula (Network)  
                             = Network∩Course∩ 
                                 Computer_Science∩ 

                       ∀ teachBy.Lecture∩ 
                       ∀ teachFor.Undergraduate 

In this paper, we look at the logic formulas of 
concepts as complex concepts of DL, and accordingly 
the concepts and relations of ontology are as the 
atomic concepts and roles of DL. The complex 
concepts capture the meaning of the corresponding 
concepts in the ontologies. Such as for the concept 
“Network”, its complex concept(logical formula) 
represents its meaning in ontology O2 as “Network is a 
course of computer science, and it is taught by lecturer 
and for undergraduate”. Subsequently, semantic 
mapping between concepts of different ontologies are 
discovered by determining the semantic relationships 
between their corresponding complex concepts.  

 
Figure 1. Two independent ontologies of computer 

science department 
 

We use inference of DL to get semantic 
relationships between complex concepts. Before to do 
it, two things must be done. Firstly, the labels of 
atomic concepts and atomic relations in the complex 
concepts are rewritten in consistent forms. Secondly, 
the relationships in real world between atomic concept 



labels in complex concepts are found, which are as the 
premise for reasoning. 
 
3.3 Consistency in labels 
 

Because of the richness of natural language, 
different ontologies maybe use different terminologies 
to denote the same concept. The consistency in concept 
labels is to unify the terms as concept labels. We 
access the WordNet[9] to unify the terms. WordNet is 
an on-line lexical reference system developed at 
Princeton University. It consists of synonym sets called 
synsets, and each synset represents a single distinct 
concept. For example, in figure 1 the term “staff” in O1 
and the term “faculty” in O2 denote the same concept 
“academic people”. In the WordNet, they have the 
same synset “staff#2”. So, they can be represented 
using the same string “staff#2”. But for other concepts, 
such as “Course”, they use the same concept labels, 
and correspond to eight synsets. So, the concept 
“Course” is represented by the union of the eight 
synset labels, “course#1∪course#2∪…∪course#8” 
in logical form. 

The consistency in relation labels means unifying 
the terms as relation labels. The relation is determined 
by its range and domain. So we can determine that two 
relations are consistent, if they have the same range 
and domain, or the range and the domain have 
subsumption relation respectively. For example, in 
figure 1, the relation “instructBy” in O1 and the 
relation “teachBy” in O2 have the same domain defined 
as concept “Course”. But they have range defined as 
concept “Faculty” and “Staff” respectively. Through 
the process of unifying for concept labels, “Staff” and 
“Faculty” correspond to the same label “staff#2”. So 
we can determine the relation “teachBy” is consistent 
to the relation “instructBy”, and they can be 
represented by the same label. 
 
3.4 Relationships between atomic concept 
labels 
  

Each term as label has a meaning independently 
from the ontology where it occurs. In order to do 
inference between complex concepts, the relationships 
between atomic concept labels in different complex 
concepts must be discovered. They are transformed to 
the axioms as the premises of inference. In this paper, 
we access WordNet to get relationships between terms. 
WordNet organizes terms based on the semantic 
relations of them. So these relations are just origin of 
our axioms generating. The relations of terms in the 
WordNet corresponding to subsumption axioms are 
shown in table 1. 

Table 1.  WordNet relations vs. subsumption axioms 

 
 

For example, in figure 1, the concept “Professor” 
correspond to the synset “professor#1” and the concept  
“Assistant_Professor” correspond to the synset 
“assistant professor#1” of WordNet. They have the 
hypernym relation, i.e “professor#1” hypernym of 
“assistant professor#1”. So there is an axiom for 
“Professor” and “Assistant_Professor”, which is 
Assistant_Professor⊆Professor described with logic 
formula. 
 
3.5 The process of ontology mapping 
 

The process of ontology mapping is in four steps. 
We describe these steps with example of ontologies in 
figure 1. 
Step 1: transforming the concepts of ontologies into 
complex concepts of DL using the labels of concepts 
and relations, and restrictions of ontologies. In the 
ontology O1, the complex concept 
Complex_Concept(Data_Mining)1 of concept “Data 
Mining” is: 
Complex_Concept(Data_Mining)1 

= Data_Mining∩AI∩Course 
∩Computer_Science 
∩∀ instructBy. Assistant_Professor      (1) 

And in ontology O2, the complex concept 
Complex_Concept(Data_Mining)2 of concept 
“Data_Mining” is: 
Complex_Concept(Data_Mining)2 

= Data_Mining∩Course 
∩Computer_Science 

                       ∩∀ teachBy. Professor                     (2) 
Through this process, the two input ontologies are 
transformed into complex concept sets.  
Step 2: unifying the representation form of concept 
labels and relation labels in complex concepts by 
accessing WordNet. We use the methods described in 
senction 3.3 to unify the representation form of labels. 
For example, we define the unified form for relations 
“teachBy” and “instructBy” as “teachBy”.  



So, the formulas (1) and (2) are transformed to the 
formulas (3) and (4) which are represented by 
consistent labels: 
Complex_Concept(Data_Mining)1 

= Data_Mining#1∩AI#1 
∩ (course#1∪course#2∪…∪course#8) 
∩ Computer_Science#1 
∩∀ teachBy.Assistant_Professor#1            (3) 

Complex_Concept(Data_Mining)2 
= Data_Mining#1 
∩ (course#1∪course#2∪…∪course#8) 
∩ Computer_Science#1 
∩∀ teachBy. Professor#1                          (4) 

Step 3: get the subsumption axioms among the concept 
labels. This process is described in section 3.4. For the 
formulas (3) and (4), we can get subsumption axioms 
from WordNet showed as follows: 

Assistant_Professor#1⊆Professor#1 
AI#1⊆Computer_Science#1                   (5)  

Step 4: discover the semantic relationships between 
complex concepts through inference of DL. With the 
subsumption axioms among the concept labels 
generated in the step 3 as the premises for reasoning, 
we can use tableau algorithm[10] of DL to reason the 
semantic relationships between complex concepts.  

The basic idea of tableau algorithm is to try to prove 
the satisfiability of a concept C by exhaustively 
appling tableau rules that decompose the syntactic 
structure of the concepts to construct a so-called 
completion tree, a tree where each node x of the tree is 
labeled with a concept set L(x)⊆sub(C) and each edge 
<x, y> is labeled by L(<x, y>)=R for some role R 
occurring in sub(C), where the sub(C) is the set of sub-
concepts of C. The tree is called complete when for 
some node x, L(x) contains a clash, or when none of 
rules is applicable. For a node x, L(x) is said to contain 
a clash if, for some concept D, {D, ¬D}⊆L(x). For a 
input concept C, if the expansion rules can be applied 
in such a way that they yield a complete, clash-free 
completion tree, then the algorithm returns “C is 
satisfiable”, and “C is unsatisfiable” otherwise. 

So for two concepts C and D, checking the 
subsumption relation C⊆D corresponds to test the 
(un)satisfiability of the concept C∩¬D, that is C⊆

D ⇔ C∩¬D is unsatisfiable. The identify of semantic 
relations between concepts of different ontologies 
presented in section 3.1 can be transformed to test 
unsatisfiability of the concept, shown in the following 
♦ C1⊆C2 ⇔  C1∩¬ C2 is unsatisfiable. 
♦ C1⊇C2 ⇔  C2∩¬ C1 is unsatisfiable. 
♦ C1≡C2 ⇔  C1∩¬ C2 is unsatisfiable and C2∩

¬ C1 is unsatisfiable. 

♦ C1⊥C2 ⇔  C1∩C2 is unsatisfiable. 
For example, we can use tableau algorithm for 

ALC[11][12] to check semantic relations between two 
complex concepts showed in formulas (3) and (4). The 
expansion rules for ALC are showed in figure 2.  

 

 
Figure 2. Tableau expansion rules for ALC 

 
To be simple we do following substitutions. Let: 
C0= Complex_Concept (Data_Mining)1  and 
C’

0= Complex_Concept (Data_Mining)2  
denote the complex concepts, and  
C1=Computer_Science#1,C2=Data_Mining#1, 
C3=AI#1, C4=Professor#1, 
C5=Assistant_Professor#1,  
(D1, D2,…, D8) = (Course#1,Course#2,…,Course#8), 
R=teachBy  
denote atomic concepts and atomic relation in figure 1. 
So, the formula (3), (4) and (5) are transformed 
abstract formulas (7), (8) and (6). 

C5⊆C4     
C3⊆C1                                   (6) 

 C0=C1∩(D1∪D2∪…∪D8)∩C2∩C3∩∀ R .C5      (7) 
 C’

0=C1∩C2∩(D1∪D2∪…∪D8)∩∀ R .C4             (8) 
Using the formula (6) as premise, we are going to test 
if C0⊆C’

0 ⇔ C0∩¬C’
0⊆⊥ . 

C0∩¬C’
0 = (C1∩ (D1∪D2∪…∪D8) ∩C2∩C3∩∀ R 

.C5) ∩¬(C1∩C2∩ (D1∪D2∪…∪D8)∩∀ R .C4 ) 
Applying the De Morgan’s law to transform the 
concepts to negation normal form: 
¬C’

0 = ¬C1∪¬C2∪(¬D1∩¬D2∩…∩¬D8)∪∃ R. ¬C4 
C0∩¬C’

0 = (C1∩(D1∪D2∪…∪D8)∩C2∩C3∩∀ R 
.C5)∩ ( ¬C1∪¬C2∪(¬D1∩¬D2∩…∩¬D8)∪∃ R.¬C4 
) 

The tableau algorithm initializes a tree T to contain 
a node x0, concept set L(x0) = {C0∩¬C’

0}, called the 
root node. We apply∩-rule and∪-rule to extend  

L(x0) = {C1, C2, C3, ∀ R .C5, ∃ R.¬C4}. 
Here, we remove other cases for L(x0) that include 
apparently a clash, such as L(x0) including {C1, ¬C1}. 
From∃ -rule and∀ -rule, we extend L(x0), and create a 



new node x1, which is a neighbor of x0 for relation R, 
with  

L(x1) = {C1, C2, C3, C5, ¬C4}. 
According the axioms C5⊆C4 ⇔ C5∩¬C4⊆ ⊥ , so 
L(x1) includes a clash: {C5, ¬C4}. Thus C0∩¬C’

0 is 
unsatisfiable and C0⊆C’

0 is valid. 
Also, we test if C’0⊆C0 by the same process above-

mentioned, we can find that C’
0∩¬C0 is satisfiable and 

C’
0⊆C0 is not valid. So a subsumption relationship 

was detected between C0 and C’
0, which means that the 

meaning of “Data Mining” in Ontology O1 is 
subsumed by the meaning of “Data Mining” in 
ontology O2. So, the is a semantic subsumption 
relationship(⊇) between the concept “Data Mining” in 
Ontology O2 and the concept “Data Mining” in 
Ontology O1. 

Notably, when we find the semantic relationships 
between concepts, we always find the closest semantic 
relationship they held, i.e. we always firstly find the 
equivalent relationship between concepts, then other 
relationships. 

 
4 Experiments  
 
4.1 Experiment Setup 
 

We use standard information retrieval metrics, 
recall and precision, to evaluate our method and to 
compare with algorithm of CTXMATCH[2]. 
Recall R: it describes the number of correct concept 
mappings discovered in comparison to the total 
number of existing mappings. 

_ _
_

correct found mappings
R

existing mappings
=  

Precision P: it measures the number of correct concept 
mappings discovered versus the total number of 
mappings discovered. 

_ _
_

correct found mappings
P

found mappings
=  

Data set: we evaluated our approach on three data sets: 
course catalog, conference ontologies and computer 
science department ontologies. The course catalog 
describes course at Cornell University and the 
University of Washington[13]. The conference 
ontologies are from the OAEI 2007(Ontology 
Alignment Evaluation Initiative 2007)[14]. They are 
dealing with the conference organization, and two 
ontologies are selected in my experiment: Cmt and Pcs. 
The CS department ontology describes the courses, 
people and other things about the department of CS. 
The characteristics of ontologies used in this paper are 
shown in table 2. 

 
Table 2.  The characteristics of ontologies 

 
 

Processing of concept labels: when a label contains 
two or more words we do process as follows: firstly, 
we access the WordNet to extract the single 
expressions (multiword); secondly, if “and” is 
contained by the label, it is replaced by logic 
conjunction “∩”; if “or” is contained by the label, it is 
replaced by logic disjunction “∪”; thirdly, if “of” is 
contained by the label, we remove the word “of” and 
replace it with logic conjunction “∩”. For example, 
the concept label “College_of_Arts_and_Sciences”, its 
logic form transformed is “(College ∩ Arts) ∩
Sciences”. 

We conducted an experimental study to compare 
the performance of our approach with CTXMATCH. 
We have implemented the approach presented in this 
paper in an open source OWL-DL reasoner, Pellet[15]. 
Pellet supports the tableau algorithm of OWL-DL[16], 
i.e. description logic SHOIN(D). For the relationships 
between concepts of different ontologies, we firstly 
check the equivalent relationship, and then check the 
subsumption and subsumed relationships, finally check 
the disjoint relationship. The order is: “≡” > “⊇” > “
⊆” > “⊥”. 

 
4.2 Experiment Results 
 

Figure 3 shows the comparison between 
CTXMATCH and our approach about precision and 
recall of mapping between concepts of different 
ontologies. Because the course catalog only has the 
taxonomical relation between concepts (it is like a 
hierarchical classification), so the CTXMATCH and 
our approach have the same results.  

For the conference ontologies and the CS 
department ontologies, concepts have different non-
taxonomical relations with other concepts in different 
ontologies. By these relations the intended meaning of 
concepts are specified. It is not enough to identify the 
meanings of concepts only considering taxonomical 
relation. So our approach outperforms the 
CTXMATCH. 
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Figure 3. The comparison between our approach and 
CTXMATCH about recall and precision 

 
We evaluate the precision and recall of mapping 

between concepts for relationships “≡”, “⊆”, “⊇” 
and “⊥” between our approach and CTXMATCH over 
CS department ontologies respectively. The results 
compared are shown in figure 4. 
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relationships about recall and precision 
 

5. Conclusions 
 

Ontology mapping is one of the main challenges for 
semantic web. In this paper, we introduce inference of 
description logic to detect the semantic relationships 
between concepts of different ontologies. We enrich 
the CTXMATCH algorithm through considering the 
non-taxonomical relations between concepts, which 
specifies the intended meaning of concepts. Our 
approach can be applied to complex ontologies, and 
implement ontology mapping based on the intended 
meaning of concepts. Experiments show that our 
approach improves the precision and recall of ontology 
mapping for complex ontologies compared with 
CTXMATCH. 
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