
MKtrace: An innovative debugging tool for multi-threaded programs on
multiprocessor systems

Yusen Li, Feng Wang, Gang Wang, Xiaoguang Liu, Jing Liu

College of Information Technology and Science
Nankai University

liyusen007@hotmail.com

Abstract

In this paper, we propose an innovative debugging

tool called MKtrace to help programmers identify bugs
in multi-threaded programs on multiprocessor systems
with little overhead. Unlike the traditional debugging
tools, we use the trace log to analyze the cause of a
crash or any abnormal behaviour. Bugs can be
identified within the log file, not directly at run time.
Also, a key advantage of MKtrace is its insignificant
overhead.

The main idea of MKtrace is to monitor all the
processes or threads from a program when they switch
out in the kernel. We log the call stack of each thread,
and then we analyze the log in the user space.

We implemented MKtrace on Linux AS3 with two
processors and achieved promising results during our
experiments.

1. Introduction

Multi-threaded programs may contain both

sequential and concurrent errors, but deadlock and race
conditions are specific to multi-threaded programs [13].
Because multi-threaded programs have non-
repeatability and there is no synchronized global clock,
there are few useful debugging tools for them. Most of
them, like GDB [14], can only handle a single process.
Breakpoints may be set for individual threads and the
target application stops only if a particular thread
encounters the breakpoint. So these debuggers allow
interaction with only one thread at a time. Yet most of
them have complex interfaces for users or have a high
overhead. Probe effect is also typical for most of multi-
threaded program debuggers.

The classic approach to debugging single-threaded
programs involves stopping the program during
execution, examining register values and the stack.
Unfortunately, parallel programs do not always have

repeatability. Even for the same inputs, the outputs will
be different according to the executing environments.

According to the survey from CHARLES E.
MCDOWELL and DAVID P. HELMBOLD [1],
techniques for debugging concurrent systems have
been organized into four groups:

1. Traditional debugging techniques applied with
some success to parallel programs.

2. Event-based debuggers that view the
execution of a parallel program as a sequence
of events.

3. Techniques for displaying the control flow and
distributed data associated with parallel
programs.

4. Static analysis techniques based on dataflow
analysis of parallel programs.

The traditional parallel debuggers are also called
breakpoint debuggers. They are similar to a set of
sequential debuggers, one per parallel process. They
provide some control over program execution and
provide state examination. However, these debuggers
cannot tell us what happened during the interaction of
several processes and have severe probe effect.

Event-based debuggers belong to the monitoring
debuggers. They are often used to provide some replay
tools for the multi-threaded program. This method may
be more powerful than the traditional parallel
debuggers, but the probe effect is a problem if the trace
log is not recorded continuously and the overhead is
often high [8, 9].

Static analysis tools avoid the probe effect entirely
by not executing the programs. They find the potential
bugs through analyzing the source code. They are
powerful for data race, deadlocks and some semantic
errors. However, the accuracy is not satisfactory and
the computational complexity is often exponential [10].

There are four main types of techniques for
displaying the control flow according to [1]: textual
presentation of the data, time-process diagrams,
animation of program execution and multiple windows.

MKtrace, which we will discuss in this paper, is an
event-based debugger. The event of the MKtrace is the
switching process of the multi-threaded program. The
log we record during the event is the call stack of user
space, including all the return addresses and the EIP.
The main contributions of this paper are:

1. Introduction to the concept of concurrent
program debugging.

2. Implementation of MKtrace on Linux AS3
with two processors.

3. Experiments applying MKtrace to various
programs, achieving excellent results.

The rest of this paper is organized as follows.
Section 2 describes the related work of concurrent
program debugging. Section 3 describes the
implementation details of MKtrace. Section 4
describes how we used MKtrace to analyze programs.
We do some experiments in section 5 and conclude
and present ideas for future work in section 6.

2. Related Work

As mentioned in section 1, there are three main
approaches to concurrent program debugging:
traditional style debuggers, monitoring systems and
static analysis systems. Several thread debuggers have
been developed for debugging various types of
concurrent errors.

DTrace is a comprehensive dynamic tracing
framework for the Solaris Operation Environment of
Sun. It belongs to the traditional debuggers. DTrace
provides a powerful infrastructure to permit
administrators, developers, and service personnel to
concisely answer arbitrary questions about the
behavior of the operating system and user programs.
Tracing programs can be written using the D
programming language. The language is a subset of C
with additional functions and variables specific to
tracing. D programs most resemble awk programs in
structure. They consist of a set of actions rather than a
top-down structured program. In a DTrace program,
one or more probes are enabled. Whenever the
condition for the probe is met, the action associated
with the probe in the DTrace program is executed. So
there is obvious probe effect in DTrace. There are also
some famous debuggers that belong to the category of
traditional debuggers like KDB [2] and ODB [4].

The most important type of event-based debuggers
is replaying debuggers. The approach requires tracing
some events during execution. One approach is to
record the order in which processes interact [14]. Each
process logs the order of shared memory or the order
of synchronization operations [15]. There is also an

approach that traces the data readings from every
shared-memory location, but too much data is traced
and the overhead is really high [16]. Linux Trace
Toolkit is also an excellent event based debugging tool,
but it can be only used on a single processor system.

Static analysis is the only approach that has no
probe effect and it is usually used to detect two classes
of errors in concurrent programs: synchronization
errors and data race errors. The most famous analysis
of concurrent programs is the one of Taylor and
Osterweil [17]. Callahan and Subhlok [18] present
another approach for determining which data
dependencies observed in a sequential execution of a
program are preserved in a parallel execution of the
program. The static analysis is also used for intrusion
detection [18]. It is shown how static analysis may be
used to automatically derive a model of application
behavior.

The usage of call stack information during
debugging is discussed by Feng. H.H et al. [12]. They
collect information from the stack at every system call,
and draw a VTPath of the execution of the program.
However it is only for single-threaded program and the
overhead is high because it will hook all the system
calls.

MKtrace is an event-based debugging tool. Unlike
the debuggers we mentioned, MKtrace is very small
but still very efficient. The “event” of MKtrace is the
switching moment of threads and the trace log is the
call stack information. We record the call stack
information when the monitored thread switches out
and analyze the trace log after execution. The overhead
of MKtrace is light and the probe effect is also ignored.
There are three parts in MKtrace: kernel engine,
chardev and log analyzer. We implement MKtrace on
Linux AS3 and prove its effectiveness through
experiments.

3. MKtrace Implementation

The main idea of MKtrace is that we monitor all the
processes or threads from one program when they
switch out in the kernel. We record the call stack of the
process or thread, and then we analyze the log in the
user space. As we know, two threads may switch out in
the same time on multiprocessor system, so there are
some differences in the implementation between
single-processor and multi-processor systems. We will
illustrate the differences in every part of MKtrace.

3.1. Kernel Engine

http://en.wikipedia.org/wiki/C_%28programming_language%29
http://en.wikipedia.org/wiki/AWK_%28programming_language%29
http://en.wikipedia.org/wiki/Top-down

Our purpose is to log the call stack when the
process or thread is switching out. We do this in the
kernel space. When switching out, the process will call
context_switch, we can get the user space ESP and
EBP from the kernel stack as shown in Figure 1. So we
can trace the user space stack according to the EBP,
and get all the functions’ return addresses of the call
stack. The relationship between the EBP and the call
stack is shown in the Figure 2. We also record the EIP
of user space according to which we can get the line
number where the execution stopped.

TSS

TSS->esp0

Prev

…

Schedule() function
frame

SS
ESP

EFLAGS
CS
EIP

ORIG_EAX

ES
DS

EAX
EBP
EDI
ESI

EDX
ECX
EBX

User Stack

User Code

ESP

Task_struct

Thread.esp0

Figure 1. Kernel stack after any system call,
before context switch

In order to monitor all the threads of one program,

we first mark the main thread, and if the main thread
forks out other threads, we can recognize the marked
thread and mark the new thread.

To log the stack information during switch, we use
buffer to cache the log and then we fetch the log from
user space by a chardev. In a single processor system,
we can use one circular buffer to cache the log and the
log must be sequential. But in a multiprocessor system,
two processors can call the schedule separately, so two
threads can switch out at the same time. If we also use
one buffer to cache the log, we should lock the buffer
when we write it, so the schedule becomes sequential
and the performance may drop significantly. In order
to improve the performance, we provide one buffer for
each processor. Each processor can write the log into
its own buffer, but in order to analyze the log, we use a
global clock to record the sequence of the log. We
have to add a lock when we access the clock, so there
will be probe effect. For example, two threads on
different processors switch at the same time, but only
one of them can get the lock of the clock, so the
execution sequence will be changed. But in fact it only
has little impact and will not affect the correctness of
the program.

When each processor starts to write the trace log, it
should increase the global clock first, and then write
the log with the clock to its own buffer. As in the
single processor system, we also write all the logs into
a user space log file, but before we analyze it, we
should resort the log by the clock in the multiprocessor
system.

ESP

Last ebp

Return address of function A

EBP

Last ebp

Return address of function B

……

……

0 (in main function)

Figure 2. User space call stack

3.2. Chardev

The Chardev plays the role of interface between the
user space and the kernel.

First, when we start using MKtrace, we should
notice the kernel which thread should be monitored.
We implement it by the function device_ioctl in
chardev. We get the task_struct structure of the thread
to be monitored and mark it. We test the flag of the
task_struct structure in the copy_process function, if
the parent thread forks out another thread, we also
mark the new thread.

Then, once started, buffers in the kernel will be
filled with logs. We should fetch the logs from the
kernel and write them into a log file in the user space.
We implement it by the function device_read in
chardev.

The chardev is only an interface between the user
space and the kernel. We should also provide a user
interface by which users can use MKtrace. We
implement it by a user space program called mktracer.
When we want to use MKtrace, we can use the
command: mktracer program. There are two threads in
mktracer. One of them notices the kernel which thread
we will monitor by the device_ioctl of chardev.
Another thread will call the device_read of chardev to
get the log repeatedly.

Pid:1833 Clock:15 CPU:0 Out
Call Stack: Eip:0x080487ff

0x420ac952
0x080487e2
0x42105574
…

Pid:1833 Clock:15 CPU:0 Out
Call Stack: Line:8

sleep
Function A
__lic_start_main
…

Log Format Analysis Result

Translate To

Figure 3. Formats of log and analysis result

3.3 Log Analyzer

The logs we get from the kernel are actually the
return addresses of functions. The format of the log is
shown in Figure 3. “Pid” is the process ID being
monitored, “Clock” is the global clock value, “CPU”
represents which processor is working and “Out”
represents the process is switching out. “Eip” is the
current IPC, and the addresses listed below are the call
stack.

The logs come from different processors but they
have a global clock.

objdump -d a.out > output1
Find out all the “call”instructions, get the function
name (or call address) behind “call”, then make a

relationship between the function name (or call address)
and the address of next instruction.

objdump -T a.out > output2
Find out all the functions come from library, record the

function name and the call address, then replace the
call address got from last step with the function name

who has the same call address.

According the relationship got from last three steps, we
can translate the return address to the function name.

Resort the log according to the clock value

Figure 4. The flow of log analyzer

First we should sort the logs according to the clock.
However, we cannot get the function name because we
only know the return addresses. To solve this problem,
we analyze the executed file (ELF) with nm and
objdump commands. We can disassemble the
executive code, and get all the “call” instructions and
record the function names. We also record the next

instruction of the “call”, which is just the return
address of the called function. According to this
information, we create a map that records the relations
between return address and the function name. If a
program compiled with gcc –g option, we can also get
the line number from the result of command “objdump
–d –l” according to the EIP address.

1348 1348 1349

1349 1349 1348 1349

CPU0

CPU1

Figure 5. Animation of the program execution

4. What can MKtrace do?

Though MKtrace is a simple debugging tool, it can
help programmers to identify various bugs quickly
from the log. We will illustrate some usages of
MKtrace by some examples. MKtrace cannot only find
some traditional single process bugs but also identify
some familiar concurrent errors. We do some
experiments in next section.

4.1 Execution Animation

If we both monitor the switching out and switching
in process of a thread, we can get the execution
animation of the multi-threaded program. For example,
Figure 5 shows a program with a two thread execution
animation on a dual-core system. In Figure 5, two lines
represent time axis of two processors, “1348” and
“1349” are tow threads. The blocks denote that threads
are executing on the processor.

4.2 Dead Lock Detection

When a deadlock occurs, thread A is waiting for the

resource owned by thread B, while thread B is also
waiting for some resources owned by A. None of the
two threads will release the resources until they get the
resources from the other side.

MKtrace can tell the programmer where the two
threads stopped precisely. We can find that, if there is
a deadlock, the log record of the two threads will not
change after a fixed time. We can also get the location
of the deadlock from the line number of the source
code given by the log.

4.3 Data Race Analysis

Figure 6. Pseudo code of dead lock

Unlike other data race identification tools, MKtrace

cannot find the data race from the execution process
directly. However, if a programmer can anticipate
some potential data races and insert some asserts into
the source code, MKtrace can help him identify the
cause of a data race. The reason is that MKtrace can
draw an execution path of all the threads. If thread B
switches in after thread A switches out and illegally
modifies the shared memory, then, the thread A
switches in again and the assert fails. At this time,
MKtrace can tell the programmer which thread has
switched in during the time out of thread A.
Programmer can get some illuminations from the result.

4.4 Anomaly Detection

We cannot only monitor the switching out process

but also the switching in process. If there are some
intrusions during the switching out time, the call stack
has changed when the thread switches in again. We
can analyze the differences within the stack
information to identify the problem.

5. Experimental Evaluation

In order to give some representative examples, we

apply some small programs with the specific bugs
mentioned above to MKtrace. We will show the
interesting logs in this section.

5.1 Dead Lock Detection

The program showed in Figure 6 has a deadlock.
The initialized values of i and j are 0.

Figure 7. Analysis result from MKtrace

When the program runs, threads will be blocked at
line 8 and line 17. At that time, we stop the program
and analyze the log from MKtrace, the result is shown
in Figure 7.

We can find the problem immediately, because both
threads repeatedly log the same line and can not go
ahead.

MKtrace is unable to distinguish the dead lock from
a long time blocking, so you should stop the program
personally if you doubt that there may be some
problems in your program.

Figure 8. MKtrace log of intrusion

Pid:1833 Clock:4 CPU:0 Out
Call stack: EIP:0x08048780

0x420ac952
0x080487e2
0x42105574
0x08048581
……

Pid:1833 Clock:5 CPU:0 In
Call stack: EIP:0x08048780

0x420ac952
0x080487e2
0x42105574
0xc03059a4

Thread1:
void threadfunc1 (void)
{
 if(i!=0)
 {
 i = 1;
 }
 while(!j); //line 8
 i = 1;
}
Thread2:
void threadfunc2 (void)
{
 if(j!=0)
 {
 i = 1;
 }
 while(!i); //line 17
 j = 1;
}

Pid:1812 Clock:1 CPU:0 Out
Call stack: Line:8

threadfunc1
__libc_start_main

Pid:1811 Clock:2 CPU:0 Out
Call stack: Line:17

threadfunc2
__libc_start_main

Pid:1812 Clock:3 CPU:1 Out
Call stack: Line:8

…….
Pid:1811 Clock:8 CPU:0 Out
Call stack: Line:17

 ……

Figure 9. Code which has data race

5.2 Data Race

We will give a simple example of the data race case
and explain how MKtrace can help us. The program
shown in Figure 9 has a data race.

The data race is proved to happen when the assert
fails and the program exits. We can see that the
process with PID 20656 has switched in twice during
the switching out of the process with PID 20657. So
we can suppose that process with PID 20656 modified
the shared variable. We can also find this by the
animation of the execution of Figure 10.

5.3 Anomaly Detection and Stack Smashing

Stack smashing can also be involved in this section,
because the stack is smashed when an anomaly occurs.
In order to find the intrusions, we should monitor the
process’s switching in. We create two threads in one
program. When thread A switches out, thread B plays

the role of an intruder. It will modify the user space
EBP of thread A, and insert another address to replace
the original EBP. When thread A switches in again, it
will find that the user space call stack has changed.
Part of the log is shown in Figure 8.

int * shint; //shared memory
int main()
{
 pid_t child;
 int ret = 0, status;
 char * test;
 shint = (int
*)mmap(NULL,sizeof(int),PROT_READ|P
ROT_WRITE,MAP_SHARED|MAP_ANO
NYMOUS,-1,0); //shared memory
 *shint = 0;

Pid:20656 Clock:1 CPU:0 Out
Call stack: Line:10
 fork
 __libc_start_main
Pid:20657 Clock:2 CPU:0 Out
Call stack: Line:16
 sleep
 __libc_start_main
Pid:20656 Clock:3 CPU:1 Out
Call stack: Line:28
 sleep
 funcb
 __libc_start_main
Pid:20656 Clock:4 CPU:0 Out
Call stack: Line:13
 wait
 __libc_start_main
Pid:20657 Clock:5 CPU:0 Out //exit
Pid:20656 Clock:6 CPU:0 Out //exit

 child = fork();//line 10
if(child > 0){

 funcb();
 wait(&status);

}else{
 sleep(3);//line 16
 funca(1);
 }
 return 0;
}
void funca()
{
 assert((*shint) == 0);
}
void funcb()
{
 *shint = 1;
 sleep(1);//line 28
}

Figure 10. Analysis result of Figure 9

We will find that, there is an unexpected address in

the log of switching in. The address 0xc03059a4 is the
return address of intrusion code.

0

0.5

1

1.5

2

S-cpu S-thread S-fileio Matrix-
mul

FFT Sort

E
xe

cu
tio

n
 T

im
e

 O
ve

rh
e

a
d

 (
%

)

Separate Buffer

Shared Buffer

Figure 11. Overhead of MKtrace

The log file size may be very large, we can use a
circular file to avoid this situation. If the circular file is
full, we truncate the log file. Though some information

will be lost, the information has no effect on our
analysis.

5.4 Neglectable Overhead

The main attraction of MKtrace is its small
overhead. So many programmers flinch from the high
overhead of some other debugging tools for replay or
anomaly detection. MKtrace however is efficient, we
only need to record the call stack information when the
processes switch out. These instructions only access
some memory locations and will not take much time.
Figure 11 shows the overhead of the MKtrace. “S-
cpu”,”S-thread” and “S-fileio” denote SysBench with
cpu, thread and fileio test modes.

We use SysBench, Matrix Multiply program, FFT
and Sort program to evaluate the overhead of MKtrace.
SysBench is a modular, cross-platform and multi-
threaded benchmark tool for evaluating OS parameters
that are important for a system running a database
under intensive load. We chose three test modes of
SysBench: cpu, thread and fileio. We run these
programs on the Linux AS3 OS in the virtual machine
with Pentium(R) D CPU 2.66GHz and 1.00G
memories. It is obvious that the overhead of the
MKtrace is less than 1%. By comparison, some
debugging or replay tools have 17%-88% or over
100% overhead [15].

It is interesting that the overhead of the version of
MKtrace with one shared buffer is almost the same as
the overhead of the version of MKtrace that uses one
buffer per CPU. Instinctively, MKtrace with one
shared buffer will have more overhead because many
processors should contest for the lock of the shared
buffer. But in fact, when the thread number is small,
the event that two threads switch out at the same time
will happen very rarely. So, each processor can get the
lock if it needs. When thread numbers increase, the
probability of two threads from one program switch
out simultaneously will increase, so the lock increases
the execution time. The S-thread in Figure 11 denotes
the threads test mode of SysBench, and we choose 200
threads, so the overhead of shared buffer is much
higher.

6. Conclusion

We discussed the problems encountered with
concurrent programs debugging and existing
approaches to debug multi-threaded programs. Then,
we proposed an innovative debugging tool MKtrace
for multi-threaded programs on multiprocessor systems.
As an event-based debugging tool, we use “switch

process” as the “event” and log the call stack
information of the thread. MKtrace has light overhead
and ignores probe effect. We implement MKtrace on
Linux AS3 OS with two processors. We also discussed
the implementation differences between single-
processor and multi-processor systems.

We applied MKtrace to some representative
programs and achieved excellent results. We can find
the position of deadlock immediately from the
MKtrace log. MKtrace also gives us suggestions to
find data races. If there are intrusions during switching
out, MKtrace can also tell us the intruder’s function
address. We can generally get the execution animation
of multi-threaded programs.

MKtrace can be used for many thread systems as
long as the thread system has the kernel structure and
the kernel charges for the switching process. In the
future, we will develop on some other platforms like
MPI and invent more features for MKtrace in order to
make it even more powerful.

7. Acknowledgements

This paper is sponsored by NSF of China
(No.90612001), Science and Technology Development
Plan of Tianjin , (No. 043800311, 043185111-14) and
Nankai University Innovation Fund and ISC.

8. References

[1] Charles E. Mcdowell and David P. Helmbold,
“Debugging Concurrent Programs”, ACM Computing
Surveys (CSUR) Volume 21, Issue 4, 1989. pp. 593-622.

[2] PA Buhr, M Karsten, J Shih, “DB: a multi-threaded
debugger for multi-threaded applications”, Proceedings of
the SIGMETRICS symposium on Parallel and distributed
tools, Philadelphia, Pennsylvania, United States, 1996, pp.
80-87.

[3] Andrew P.Tolmach and Andrew W.Appel, “Debuggable
concurrency extensioins for standard ML”, Technical Report
CS-TR-352-91, Princeton University, Dept. of Computer
Science, 1991.

[4] ODB,
http://java.sun.com/features/2002/08/omnidebug.html

[5] Detlefs, D.L. Leino, R.M., Nelson, G., and Saxe, J.B.,
“Extended static checking”, Tech. Rep. Res. Rep. 149,
Systems Reaearch Center, Digital Equipment Corp, Palo
Alto, Calif, 1997.

[6] Stefan Savage, Michael Burrows, Greg Nelson,
Patrick Sobalvarro, Thomas Anderson, “Eraser: a

dynamic data race detector for multithreaded
programs”, ACM Transactions on Computer Systems
(TOCS) archive Volume 15 , Issue 4 (November
1997), 1997, pp. 391-411.

[7] Ahmed K. Elmagarmid, “A survey of distributed
deadlock detection algorithms”, ACM Transactions on
Computer Systems (TOCS) Volume 15, Issue 4 (November
1997), 1997, pp. 391-411.

[8] T.J. LeBlanc J.M. Mellor-Crummey, “Debugging parallel
programs with instant replay”, IEEE Transactions on
Computers Volume 36 ,Issue 4 (April 1987), 1987, pp. 471-
482.

[9] Michiel Ronsse, Koen De Bosschere, Jacques Chassin de
Kergommeaux, “Execution replay and debugging”, Fourth
International Workshop on Automated Debugging (AADebug
2000).

[10] N Feamster, H Balakrishnan, “Detection BGP
Configuration Faults with Static Analysis”, Networked
Systems Design and Implementation, 2005.

[11] Sougata Mukherjea John T. Stasko, “Applying
algorithm animation techniques for program tracing,
debugging, and understanding”, International Conference on
Software Engineering Proceedings of the 15th international
conference on Software Engineering Baltimore, Maryland,
1993, pp. 456-465.

[12] HH Feng, OM Kolesnikov, P Fogla, W Lee,
“Anomaly detection using call stack information”,
Security and Privacy, May 2003, pp. 62- 75.

[13] Farchi, E. Nir, Y. Ur, S, “Concurrent bug patterns and
how to test them”, Parallel and Distributed Processing
Symposium, 2003. Proceedings, April 2003, pp. 22-26.

[14] Richard H. Carver and Kuo-Chung Tai, “Reproducible
Testing of Concurrent Programs Based on Shared Variables”,
6th Intl, Conf. on Distributed Computing Systems, Boston,
MA, May 1986, pp. 428-432.

[15] K. C. Tai, Richard H. Carver, and Evelyn E. Obaid,
“Debugging Concurrent Ada Programs by Deterministic
Execution”, IEEE Trans On Software Engineering, January
1991, pp.45-63.

[16] Douglas Z. Pan and Mark A. Linton, “Supporting
Reverse Execution of Parallel Programs”, SIGPLAN/SIGOPS
Workshop on Parallel and Distributed Debugging, may 1988,
pp. 124-129.

[17] Taylor, R. N, “Debugging real-time software in a host-
target environment”, Tech. Rep.212, Univ. of California at
Irvine, 1984. [18] Waqner, D. Dean, R, “intrusion detection
via static analysis”, Security and Privacy, California Univ.
Berkeley, CA, 2001.

[18] Waqner, D. Dean, R, “intrusion detection via static
analysis”, Security and Privacy, California Univ. Berkeley,
CA, 2001.

http://portal.acm.org/toc.cfm?id=J774&type=periodical&coll=GUIDE&dl=portal,ACM&idx=J774&part=periodical&WantType=periodical&title=ACM%20Transactions%20on%20Computer%20Systems%20%28TOCS%29&CFID=23444557&CFTOKEN=85244617
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1199328
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=8608
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=8608

	1. Introduction
	2. Related Work
	3. MKtrace Implementation
	3.1. Kernel Engine
	3.2. Chardev
	3.3 Log Analyzer

	4. What can MKtrace do?
	4.1 Execution Animation
	4.2 Dead Lock Detection
	4.3 Data Race Analysis
	4.4 Anomaly Detection

	5. Experimental Evaluation
	5.1 Dead Lock Detection
	5.2 Data Race
	5.3 Anomaly Detection and Stack Smashing
	5.4 Neglectable Overhead

	6. Conclusion
	7. Acknowledgements
	8. References

