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Abstract 

 
In this paper, we propose an innovative debugging 

tool called MKtrace to help programmers identify bugs 
in multi-threaded programs on multiprocessor systems 
with little overhead. Unlike the traditional debugging 
tools, we use the trace log to analyze the cause of a 
crash or any abnormal behaviour. Bugs can be 
identified within the log file, not directly at run time. 
Also, a key advantage of MKtrace is its insignificant 
overhead. 

The main idea of MKtrace is to monitor all the 
processes or threads from a program when they switch 
out in the kernel. We log the call stack of each thread, 
and then we analyze the log in the user space. 

We implemented MKtrace on Linux AS3 with two 
processors and achieved promising results during our 
experiments.  
 
1. Introduction 

 
Multi-threaded programs may contain both 

sequential and concurrent errors, but deadlock and race 
conditions are specific to multi-threaded programs [13]. 
Because multi-threaded programs have non-
repeatability and there is no synchronized global clock, 
there are few useful debugging tools for them. Most of 
them, like GDB [14], can only handle a single process. 
Breakpoints may be set for individual threads and the 
target application stops only if a particular thread 
encounters the breakpoint. So these debuggers allow 
interaction with only one thread at a time. Yet most of 
them have complex interfaces for users or have a high 
overhead. Probe effect is also typical for most of multi-
threaded program debuggers. 

The classic approach to debugging single-threaded 
programs involves stopping the program during 
execution, examining register values and the stack. 
Unfortunately, parallel programs do not always have 

repeatability. Even for the same inputs, the outputs will 
be different according to the executing environments. 

According to the survey from CHARLES E. 
MCDOWELL and DAVID P. HELMBOLD [1], 
techniques for debugging concurrent systems have 
been organized into four groups: 

1. Traditional debugging techniques applied with 
some success to parallel programs. 

2. Event-based debuggers that view the 
execution of a parallel program as a sequence 
of events. 

3. Techniques for displaying the control flow and 
distributed data associated with parallel 
programs. 

4. Static analysis techniques based on dataflow 
analysis of parallel programs. 

The traditional parallel debuggers are also called 
breakpoint debuggers. They are similar to a set of 
sequential debuggers, one per parallel process. They 
provide some control over program execution and 
provide state examination. However, these debuggers 
cannot tell us what happened during the interaction of 
several processes and have severe probe effect. 

Event-based debuggers belong to the monitoring 
debuggers. They are often used to provide some replay 
tools for the multi-threaded program. This method may 
be more powerful than the traditional parallel 
debuggers, but the probe effect is a problem if the trace 
log is not recorded continuously and the overhead is 
often high [8, 9]. 

Static analysis tools avoid the probe effect entirely 
by not executing the programs. They find the potential 
bugs through analyzing the source code. They are 
powerful for data race, deadlocks and some semantic 
errors. However, the accuracy is not satisfactory and 
the computational complexity is often exponential [10]. 

There are four main types of techniques for 
displaying the control flow according to [1]: textual 
presentation of the data, time-process diagrams, 
animation of program execution and multiple windows. 



MKtrace, which we will discuss in this paper, is an 
event-based debugger. The event of the MKtrace is the 
switching process of the multi-threaded program. The 
log we record during the event is the call stack of user 
space, including all the return addresses and the EIP. 
The main contributions of this paper are: 

1. Introduction to the concept of concurrent 
program debugging. 

2. Implementation of MKtrace on Linux AS3 
with two processors. 

3. Experiments applying MKtrace to various 
programs, achieving excellent results. 

The rest of this paper is organized as follows. 
Section 2 describes the related work of concurrent 
program debugging. Section 3 describes the 
implementation details of MKtrace. Section 4 
describes how we used MKtrace to analyze programs. 
We do some experiments in section 5 and conclude 
and present ideas for future work in section 6. 
 
2. Related Work 
 

As mentioned in section 1, there are three main 
approaches to concurrent program debugging: 
traditional style debuggers, monitoring systems and 
static analysis systems. Several thread debuggers have 
been developed for debugging various types of 
concurrent errors. 

DTrace is a comprehensive dynamic tracing 
framework for the Solaris Operation Environment of 
Sun. It belongs to the traditional debuggers. DTrace 
provides a powerful infrastructure to permit 
administrators, developers, and service personnel to 
concisely answer arbitrary questions about the 
behavior of the operating system and user programs. 
Tracing programs can be written using the D 
programming language. The language is a subset of C 
with additional functions and variables specific to 
tracing. D programs most resemble awk programs in 
structure. They consist of a set of actions rather than a 
top-down structured program. In a DTrace program, 
one or more probes are enabled. Whenever the 
condition for the probe is met, the action associated 
with the probe in the DTrace program is executed. So 
there is obvious probe effect in DTrace. There are also 
some famous debuggers that belong to the category of 
traditional debuggers like KDB [2] and ODB [4]. 

The most important type of event-based debuggers 
is replaying debuggers. The approach requires tracing 
some events during execution. One approach is to 
record the order in which processes interact [14]. Each 
process logs the order of shared memory or the order 
of synchronization operations [15]. There is also an 

approach that traces the data readings from every 
shared-memory location, but too much data is traced 
and the overhead is really high [16]. Linux Trace 
Toolkit is also an excellent event based debugging tool, 
but it can be only used on a single processor system. 

Static analysis is the only approach that has no 
probe effect and it is usually used to detect two classes 
of errors in concurrent programs: synchronization 
errors and data race errors. The most famous analysis 
of concurrent programs is the one of Taylor and 
Osterweil [17]. Callahan and Subhlok [18] present 
another approach for determining which data 
dependencies observed in a sequential execution of a 
program are preserved in a parallel execution of the 
program. The static analysis is also used for intrusion 
detection [18]. It is shown how static analysis may be 
used to automatically derive a model of application 
behavior. 

The usage of call stack information during 
debugging is discussed by Feng. H.H et al. [12]. They 
collect information from the stack at every system call, 
and draw a VTPath of the execution of the program. 
However it is only for single-threaded program and the 
overhead is high because it will hook all the system 
calls. 

MKtrace is an event-based debugging tool. Unlike 
the debuggers we mentioned, MKtrace is very small 
but still very efficient. The “event” of MKtrace is the 
switching moment of threads and the trace log is the 
call stack information. We record the call stack 
information when the monitored thread switches out 
and analyze the trace log after execution. The overhead 
of MKtrace is light and the probe effect is also ignored. 
There are three parts in MKtrace: kernel engine, 
chardev and log analyzer. We implement MKtrace on 
Linux AS3 and prove its effectiveness through 
experiments. 

 
3. MKtrace Implementation 
 

The main idea of MKtrace is that we monitor all the 
processes or threads from one program when they 
switch out in the kernel. We record the call stack of the 
process or thread, and then we analyze the log in the 
user space. As we know, two threads may switch out in 
the same time on multiprocessor system, so there are 
some differences in the implementation between 
single-processor and multi-processor systems. We will 
illustrate the differences in every part of MKtrace.  
 
3.1. Kernel Engine 
 

http://en.wikipedia.org/wiki/C_%28programming_language%29
http://en.wikipedia.org/wiki/AWK_%28programming_language%29
http://en.wikipedia.org/wiki/Top-down


Our purpose is to log the call stack when the 
process or thread is switching out. We do this in the 
kernel space. When switching out, the process will call 
context_switch, we can get the user space ESP and 
EBP from the kernel stack as shown in Figure 1. So we 
can trace the user space stack according to the EBP, 
and get all the functions’ return addresses of the call 
stack. The relationship between the EBP and the call 
stack is shown in the Figure 2. We also record the EIP 
of user space according to which we can get the line 
number where the execution stopped. 
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Figure 1. Kernel stack after any system call, 
before context switch 

 
In order to monitor all the threads of one program, 

we first mark the main thread, and if the main thread 
forks out other threads, we can recognize the marked 
thread and mark the new thread. 

To log the stack information during switch, we use 
buffer to cache the log and then we fetch the log from 
user space by a chardev. In a single processor system, 
we can use one circular buffer to cache the log and the 
log must be sequential. But in a multiprocessor system, 
two processors can call the schedule separately, so two 
threads can switch out at the same time. If we also use 
one buffer to cache the log, we should lock the buffer 
when we write it, so the schedule becomes sequential 
and the performance may drop significantly. In order 
to improve the performance, we provide one buffer for 
each processor. Each processor can write the log into 
its own buffer, but in order to analyze the log, we use a 
global clock to record the sequence of the log. We 
have to add a lock when we access the clock, so there 
will be probe effect. For example, two threads on 
different processors switch at the same time, but only 
one of them can get the lock of the clock, so the 
execution sequence will be changed. But in fact it only 
has little impact and will not affect the correctness of 
the program. 

When each processor starts to write the trace log, it 
should increase the global clock first, and then write 
the log with the clock to its own buffer. As in the 
single processor system, we also write all the logs into 
a user space log file, but before we analyze it, we 
should resort the log by the clock in the multiprocessor 
system. 

ESP
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Return address of function A

EBP

Last ebp

Return address of function B

……

……

0 (in main function)

 
 

Figure 2. User space call stack 
 

3.2. Chardev 
 

The Chardev plays the role of interface between the 
user space and the kernel. 

First, when we start using MKtrace, we should 
notice the kernel which thread should be monitored. 
We implement it by the function device_ioctl in 
chardev. We get the task_struct structure of the thread 
to be monitored and mark it. We test the flag of the 
task_struct structure in the copy_process function, if 
the parent thread forks out another thread, we also 
mark the new thread. 

Then, once started, buffers in the kernel will be 
filled with logs. We should fetch the logs from the 
kernel and write them into a log file in the user space. 
We implement it by the function device_read in 
chardev. 

The chardev is only an interface between the user 
space and the kernel. We should also provide a user 
interface by which users can use MKtrace. We 
implement it by a user space program called mktracer. 
When we want to use MKtrace, we can use the 
command: mktracer program. There are two threads in 
mktracer. One of them notices the kernel which thread 
we will monitor by the device_ioctl of chardev. 
Another thread will call the device_read of chardev to 
get the log repeatedly. 

 



Pid:1833  Clock:15  CPU:0  Out
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Figure 3. Formats of log and analysis result 
 

3.3 Log Analyzer 
 

The logs we get from the kernel are actually the 
return addresses of functions. The format of the log is 
shown in Figure 3. “Pid” is the process ID being 
monitored, “Clock” is the global clock value, “CPU” 
represents which processor is working and “Out” 
represents the process is switching out. “Eip” is the 
current IPC, and the addresses listed below are the call 
stack. 

The logs come from different processors but they 
have a global clock.  

 

objdump -d a.out  >  output1
Find out all the “call”instructions, get the function 
name (or call address) behind “call”, then make a 

relationship between the function name (or call address) 
and the address of next instruction.

objdump -T a.out  >  output2
Find out all the functions come from library, record the 

function name and the  call address, then replace the 
call address got from last step with the function name 

who has the same call address.

According the relationship got from last three steps, we 
can translate the return address to the function name.

Resort the log according to the clock value

 
 

Figure 4. The flow of log analyzer 
 

First we should sort the logs according to the clock. 
However, we cannot get the function name because we 
only know the return addresses. To solve this problem, 
we analyze the executed file (ELF) with nm and 
objdump commands. We can disassemble the 
executive code, and get all the “call” instructions and 
record the function names. We also record the next 

instruction of the “call”, which is just the return 
address of the called function. According to this 
information, we create a map that records the relations 
between return address and the function name. If a 
program compiled with gcc –g option, we can also get 
the line number from the result of command “objdump 
–d –l” according to the EIP address. 
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Figure 5. Animation of the program execution 

 
4. What can MKtrace do? 
 

Though MKtrace is a simple debugging tool, it can 
help programmers to identify various bugs quickly 
from the log. We will illustrate some usages of 
MKtrace by some examples. MKtrace cannot only find 
some traditional single process bugs but also identify 
some familiar concurrent errors. We do some 
experiments in next section. 

 
4.1 Execution Animation 
 

If we both monitor the switching out and switching 
in process of a thread, we can get the execution 
animation of the multi-threaded program. For example, 
Figure 5 shows a program with a two thread execution 
animation on a dual-core system. In Figure 5, two lines 
represent time axis of two processors, “1348” and 
“1349” are tow threads. The blocks denote that threads 
are executing on the processor. 
 
4.2 Dead Lock Detection 

 
When a deadlock occurs, thread A is waiting for the 

resource owned by thread B, while thread B is also 
waiting for some resources owned by A. None of the 
two threads will release the resources until they get the 
resources from the other side. 

MKtrace can tell the programmer where the two 
threads stopped precisely. We can find that, if there is 
a deadlock, the log record of the two threads will not 
change after a fixed time. We can also get the location 
of the deadlock from the line number of the source 
code given by the log. 
 
4.3 Data Race Analysis 

 



 
 

Figure 6. Pseudo code of dead lock 
 
Unlike other data race identification tools, MKtrace 

cannot find the data race from the execution process 
directly. However, if a programmer can anticipate 
some potential data races and insert some asserts into 
the source code, MKtrace can help him identify the 
cause of a data race. The reason is that MKtrace can 
draw an execution path of all the threads. If thread B 
switches in after thread A switches out and illegally 
modifies the shared memory, then, the thread A 
switches in again and the assert fails. At this time, 
MKtrace can tell the programmer which thread has 
switched in during the time out of thread A. 
Programmer can get some illuminations from the result. 

 
4.4 Anomaly Detection 

 
We cannot only monitor the switching out process 

but also the switching in process. If there are some 
intrusions during the switching out time, the call stack 
has changed when the thread switches in again. We 
can analyze the differences within the stack 
information to identify the problem. 
 
5. Experimental Evaluation 

 
In order to give some representative examples, we 

apply some small programs with the specific bugs 
mentioned above to MKtrace. We will show the 
interesting logs in this section. 

5.1 Dead Lock Detection 
 

The program showed in Figure 6 has a deadlock. 
The initialized values of i and j are 0. 

 

 
 
 

Figure 7. Analysis result from MKtrace 
 

When the program runs, threads will be blocked at 
line 8 and line 17. At that time, we stop the program 
and analyze the log from MKtrace, the result is shown 
in Figure 7. 

We can find the problem immediately, because both 
threads repeatedly log the same line and can not go 
ahead. 

MKtrace is unable to distinguish the dead lock from 
a long time blocking, so you should stop the program 
personally if you doubt that there may be some 
problems in your program. 

 

 
 

Figure 8. MKtrace log of intrusion 
 

Pid:1833 Clock:4 CPU:0 Out 
Call stack: EIP:0x08048780 

0x420ac952 
0x080487e2 
0x42105574 
0x08048581 
…… 

Pid:1833 Clock:5 CPU:0 In 
Call stack: EIP:0x08048780 

0x420ac952 
0x080487e2 
0x42105574 
0xc03059a4 

Thread1: 
void threadfunc1 (void) 
{ 
 if( i!=0 ) 
 { 
  i = 1; 
 } 
 while(!j); //line 8 
 i = 1; 
} 
Thread2: 
void threadfunc2 (void) 
{ 
 if( j!=0 ) 
 { 
  i = 1; 
 } 
 while(!i); //line 17 
 j = 1; 
} 

Pid:1812 Clock:1 CPU:0 Out 
Call stack: Line:8 

threadfunc1 
__libc_start_main 

Pid:1811 Clock:2 CPU:0 Out 
Call stack: Line:17 

threadfunc2 
__libc_start_main 

Pid:1812 Clock:3 CPU:1 Out 
Call stack: Line:8 

……. 
Pid:1811 Clock:8 CPU:0 Out 
Call stack: Line:17 

 …… 



 
 

Figure 9. Code which has data race 
 

5.2 Data Race 
 

We will give a simple example of the data race case 
and explain how MKtrace can help us. The program 
shown in Figure 9 has a data race. 

The data race is proved to happen when the assert 
fails and the program exits. We can see that the 
process with PID 20656 has switched in twice during 
the switching out of the process with PID 20657. So 
we can suppose that process with PID 20656 modified 
the shared variable. We can also find this by the 
animation of the execution of Figure 10. 

 
5.3 Anomaly Detection and Stack Smashing 
 

Stack smashing can also be involved in this section, 
because the stack is smashed when an anomaly occurs. 
In order to find the intrusions, we should monitor the 
process’s switching in. We create two threads in one 
program. When thread A switches out, thread B plays 

the role of an intruder. It will modify the user space 
EBP of thread A, and insert another address to replace 
the original EBP. When thread A switches in again, it 
will find that the user space call stack has changed. 
Part of the log is shown in Figure 8. 

 

 

int * shint; //shared memory 
int main() 
{ 
 pid_t child; 
 int ret = 0, status; 
 char * test; 
 shint = (int 
*)mmap(NULL,sizeof(int),PROT_READ|P
ROT_WRITE,MAP_SHARED|MAP_ANO
NYMOUS,-1,0); //shared memory 
 *shint = 0; 

Pid:20656 Clock:1 CPU:0 Out 
Call stack: Line:10 
 fork 
 __libc_start_main 
Pid:20657 Clock:2 CPU:0 Out 
Call stack: Line:16 
 sleep 
 __libc_start_main 
Pid:20656 Clock:3 CPU:1 Out 
Call stack: Line:28 
 sleep 
 funcb 
 __libc_start_main 
Pid:20656 Clock:4 CPU:0 Out 
Call stack: Line:13 
 wait 
 __libc_start_main 
Pid:20657 Clock:5 CPU:0 Out //exit 
Pid:20656 Clock:6 CPU:0 Out //exit 

 child = fork();//line 10 
if(child > 0){ 

  funcb(); 
  wait(&status); 

}else{ 
  sleep(3);//line 16 
  funca(1); 
 } 
 return 0;  
} 
void funca() 
{ 
 assert((*shint) == 0); 
} 
void funcb() 
{ 
 *shint = 1; 
 sleep(1);//line 28 
} 

 
Figure 10. Analysis result of Figure 9 

 
We will find that, there is an unexpected address in 

the log of switching in. The address 0xc03059a4 is the 
return address of intrusion code. 

 

0

0.5

1

1.5

2

S-cpu S-thread S-fileio Matrix-
mul

FFT Sort

E
xe

cu
tio

n
 T

im
e

 O
ve

rh
e

a
d

 (
%

)

Separate Buffer

Shared Buffer

 
 

Figure 11. Overhead of MKtrace 
 

The log file size may be very large, we can use a 
circular file to avoid this situation. If the circular file is 
full, we truncate the log file. Though some information 



will be lost, the information has no effect on our 
analysis. 

 
5.4 Neglectable Overhead 
 

The main attraction of MKtrace is its small 
overhead. So many programmers flinch from the high 
overhead of some other debugging tools for replay or 
anomaly detection. MKtrace however is efficient, we 
only need to record the call stack information when the 
processes switch out. These instructions only access 
some memory locations and will not take much time. 
Figure 11 shows the overhead of the MKtrace. “S-
cpu”,”S-thread” and “S-fileio” denote SysBench with 
cpu, thread and fileio test modes. 

We use SysBench, Matrix Multiply program, FFT 
and Sort program to evaluate the overhead of MKtrace. 
SysBench is a modular, cross-platform and multi-
threaded benchmark tool for evaluating OS parameters 
that are important for a system running a database 
under intensive load. We chose three test modes of 
SysBench: cpu, thread and fileio. We run these 
programs on the Linux AS3 OS in the virtual machine 
with Pentium(R) D CPU 2.66GHz and 1.00G 
memories. It is obvious that the overhead of the 
MKtrace is less than 1%. By comparison, some 
debugging or replay tools have 17%-88% or over 
100% overhead [15]. 

It is interesting that the overhead of the version of 
MKtrace with one shared buffer is almost the same as 
the overhead of the version of MKtrace that uses one 
buffer per CPU. Instinctively, MKtrace with one 
shared buffer will have more overhead because many 
processors should contest for the lock of the shared 
buffer. But in fact, when the thread number is small, 
the event that two threads switch out at the same time 
will happen very rarely. So, each processor can get the 
lock if it needs. When thread numbers increase, the 
probability of two threads from one program switch 
out simultaneously will increase, so the lock increases 
the execution time. The S-thread in Figure 11 denotes 
the threads test mode of SysBench, and we choose 200 
threads, so the overhead of shared buffer is much 
higher. 

 
6. Conclusion 
 

We discussed the problems encountered with 
concurrent programs debugging and existing 
approaches to debug multi-threaded programs. Then, 
we proposed an innovative debugging tool MKtrace 
for multi-threaded programs on multiprocessor systems. 
As an event-based debugging tool, we use “switch 

process” as the “event” and log the call stack 
information of the thread. MKtrace has light overhead 
and ignores probe effect. We implement MKtrace on 
Linux AS3 OS with two processors. We also discussed 
the implementation differences between single-
processor and multi-processor systems.  

We applied MKtrace to some representative 
programs and achieved excellent results. We can find 
the position of deadlock immediately from the 
MKtrace log. MKtrace also gives us suggestions to 
find data races. If there are intrusions during switching 
out, MKtrace can also tell us the intruder’s function 
address. We can generally get the execution animation 
of multi-threaded programs. 

MKtrace can be used for many thread systems as 
long as the thread system has the kernel structure and 
the kernel charges for the switching process. In the 
future, we will develop on some other platforms like 
MPI and invent more features for MKtrace in order to 
make it even more powerful. 
 
7. Acknowledgements 
 

This paper is sponsored by NSF of China 
(No.90612001), Science and Technology Development 
Plan of Tianjin , (No. 043800311, 043185111-14) and 
Nankai University Innovation Fund and ISC. 
 
8. References 
 
[1] Charles E. Mcdowell and David P. Helmbold, 
“Debugging Concurrent Programs”, ACM Computing 
Surveys (CSUR) Volume 21, Issue 4, 1989. pp. 593-622. 
 
[2] PA Buhr, M Karsten, J Shih, “DB: a multi-threaded 
debugger for multi-threaded applications”, Proceedings of 
the SIGMETRICS symposium on Parallel and distributed 
tools, Philadelphia, Pennsylvania, United States, 1996, pp. 
80-87. 
 
[3] Andrew P.Tolmach and Andrew W.Appel, “Debuggable 
concurrency extensioins for standard ML”, Technical Report 
CS-TR-352-91, Princeton University, Dept. of Computer 
Science, 1991. 
 
[4] ODB,  
http://java.sun.com/features/2002/08/omnidebug.html 
 
[5] Detlefs, D.L. Leino, R.M., Nelson, G., and Saxe, J.B., 
“Extended static checking”, Tech. Rep. Res. Rep. 149, 
Systems Reaearch Center, Digital Equipment Corp, Palo 
Alto, Calif, 1997. 
 
[6] Stefan Savage, Michael Burrows, Greg Nelson, 
Patrick Sobalvarro, Thomas Anderson, “Eraser: a 



dynamic data race detector for multithreaded 
programs”, ACM Transactions on Computer Systems 
(TOCS) archive Volume 15 ,  Issue 4  (November 
1997), 1997, pp. 391-411. 
 
[7] Ahmed K. Elmagarmid, “A survey of distributed 
deadlock detection algorithms”, ACM Transactions on 
Computer Systems (TOCS) Volume 15, Issue 4 (November 
1997), 1997, pp. 391-411. 
 
[8] T.J. LeBlanc J.M. Mellor-Crummey, “Debugging parallel 
programs with instant replay”, IEEE Transactions on 
Computers Volume 36 ,Issue 4 (April 1987), 1987, pp. 471-
482. 
 
[9] Michiel Ronsse, Koen De Bosschere, Jacques Chassin de 
Kergommeaux, “Execution replay and debugging”, Fourth 
International Workshop on Automated Debugging (AADebug 
2000). 
 
[10] N Feamster, H Balakrishnan, “Detection BGP 
Configuration Faults with Static Analysis”, Networked 
Systems Design and Implementation, 2005. 
 
[11] Sougata Mukherjea John T. Stasko, “Applying 
algorithm animation techniques for program tracing, 
debugging, and understanding”, International Conference on 
Software Engineering Proceedings of the 15th international 
conference on Software Engineering Baltimore, Maryland, 
1993, pp. 456-465. 
 
[12] HH Feng, OM Kolesnikov, P Fogla, W Lee, 
“Anomaly detection using call stack information”, 
Security and Privacy, May 2003, pp. 62- 75. 
 
[13] Farchi, E. Nir, Y. Ur, S, “Concurrent bug patterns and 
how to test them”, Parallel and Distributed Processing 
Symposium, 2003. Proceedings, April 2003, pp. 22-26. 
 
[14] Richard H. Carver and Kuo-Chung Tai, “Reproducible 
Testing of Concurrent Programs Based on Shared Variables”, 
6th Intl, Conf. on Distributed Computing Systems, Boston, 
MA, May 1986, pp. 428-432. 
 
[15] K. C. Tai, Richard H. Carver, and Evelyn E. Obaid, 
“Debugging Concurrent Ada Programs by Deterministic 
Execution”, IEEE Trans On Software Engineering, January 
1991, pp.45-63. 
 
[16] Douglas Z. Pan and Mark A. Linton, “Supporting 
Reverse Execution of Parallel Programs”, SIGPLAN/SIGOPS 
Workshop on Parallel and Distributed Debugging, may 1988, 
pp. 124-129. 
 
[17] Taylor, R. N, “Debugging real-time software in a host-
target environment”, Tech. Rep.212, Univ. of California at 
Irvine, 1984. [18] Waqner, D. Dean, R, “intrusion detection 
via static analysis”, Security and Privacy, California Univ. 
Berkeley, CA, 2001. 

 
[18] Waqner, D. Dean, R, “intrusion detection via static 
analysis”, Security and Privacy, California Univ. Berkeley, 
CA, 2001. 
 

http://portal.acm.org/toc.cfm?id=J774&type=periodical&coll=GUIDE&dl=portal,ACM&idx=J774&part=periodical&WantType=periodical&title=ACM%20Transactions%20on%20Computer%20Systems%20%28TOCS%29&CFID=23444557&CFTOKEN=85244617
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1199328
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=8608
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=8608

	1. Introduction
	2. Related Work
	3. MKtrace Implementation
	3.1. Kernel Engine
	3.2. Chardev
	3.3 Log Analyzer

	4. What can MKtrace do?
	4.1 Execution Animation
	4.2 Dead Lock Detection
	4.3 Data Race Analysis
	4.4 Anomaly Detection

	5. Experimental Evaluation
	5.1 Dead Lock Detection
	5.2 Data Race
	5.3 Anomaly Detection and Stack Smashing
	5.4 Neglectable Overhead

	6. Conclusion
	7. Acknowledgements
	8. References

