
ESnapII : A Writable Dependent Snapshot System with Shared Cache

Guangjun Xie, Lu Qi , Feng Wang, Gang Wang, XiaoGuang Liu, Jing Liu

College of Information Science and Technology,
 Nankai University, Tianjin 300071, China

Xieguangjun1980@163.com

Abstract

Snapshot technology, which has been widely used in
data storage system for data protections and other
tasks such as data mining and data cloning, is
becoming one of the key technologies in storage area.
ESnap[16] improved the performance, resource
consumption and reliability compared with traditional
LVM snapshot implementation. But it still has some
problems: (i) high memory consumptions caused by
snapshot metadata, (ii) not support writable snapshot.
A novel optimization of Esnap called ESnapII, which
alleviates all the above four difficulties is proposed in
this paper. In detail, a global metadata cache shared
by all snapshots belongs to the same VG is proposed to
reduce the memory consumption; Future more, a
writing mechanism is presented for both dependent
and independent snapshot. Experiment results show
that ESnapII has higher performance and lower
resource utilization rate than previous work..

1. Introduction

In recent years, snapshot is becoming a key
technology in data backup and disaster recovery. Just
as its name implies, snapshot is the instantaneous
image of storage system in specific time. It can help
the storage management system to perform online
backup and other task just like data mining and data
cloning.

LVM (Logical Volume Manager) is a popular
storage virtualization system on Linux platform. The
main idea of LVM snapshot is COW (Copy-on-Write),
which means that the data are only copied to snapshot
before they are updated for the first time. But there are
many problems in LVM snapshot in its resource
occupation, performance and reliability, which depress
the availability of systems. The main defects of the
traditional LVM include (i) the size of the snapshot
metadata is linear with its storage space; (ii) the write

performance on origin which has multi-snapshots can
be poor caused by the extra COW operations; (iii) the
snapshot fails if the COW data overflows in its storage
space. To solve these problems, ESnap[16] was
developed in previous work, which used a novel
metadata cache scheme to reduce the memory
occupation. Esnap also applied dependent snapshot to
improve the COW performance of origin.

In this paper, an improved ESnap, called ESnapII, is
presented. In order to reduce the memory occupation of
snapshot, a shared cache scheme of multi-snapshots
belongs to the same VG is designed. According to this
scheme, snapshot metadata is stored on its local disk
space initially. A dynamic schedule algorithm is used
to load metadata into memory if needed, and all the
metadata in memory from different snapshot shares a
global metadata cache pool rather than local cache
space applied in ESnap. This strategy can improve the
I/O performance on snapshot under most kinds of
workload because of the improvement of metadata
cache hit rate. We also present a writing mechanism
for both common snapshots and dependent snapshots.

2. Related work

Snapshot has been widely used in storage area such
as data backup and version management. There are
four main snapshot technologies: split-mirror[1][3],
copy on demand[5], virtual view[2][4] and incremental
snapshot[8][9]. Shah proposed an optimization of
LVM snapshot [10], which improved performance
18% - 40% compared with the traditional method. The
Blue Whale system implemented iterative snapshot
mechanism [11]. ESnapII can achieve the same object
by creating two simultaneous dependent snapshots
simply and setting the older one as a read-only volume.

Yong Feng[12] introduced a snapshot facility at the
block level, which minimized disk space requirement
and write penalty of master volume. Our design of
dependent snapshot in ESnap is similar to this work.

Ninth ACIS International Conference on Software Engineering, Artificial Intelligence, Networking, and Parallel/Distributed Computing

978-0-7695-3263-9/08 $25.00 © 2008 IEEE

DOI 10.1109/SNPD.2008.94

671

Ninth ACIS International Conference on Software Engineering, Artificial Intelligence, Networking, and Parallel/Distributed Computing

978-0-7695-3263-9/08 $25.00 © 2008 IEEE

DOI 10.1109/SNPD.2008.94

677

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on January 4, 2009 at 20:06 from IEEE Xplore. Restrictions apply.

But we presented a novel metadata cache method in
[16]. Zhen[13] recommended a system SSDCD
(snapshot system on disk caching disk) implementing
snapshot on the block device. This system
implemented the function of snapshot on the block
device with the method of COW. Sitaraman[14] built a
consistent snapshot of file which used a logging
mechanism to record the modifications to each disk
block, and then employed fast algorithms to
reconstruct the contents of the file as it existed
sometime in the past. Xiao et al [1] proposed a
quantitative performance evaluation of different
snapshot methods at block device level. The layout and
operation of snapshot metadata is one of the key
problems in snapshot implementation. To the best of
our knowledge, we are the first one to design and
implement metadata cache management mechanism on
snapshot.

3. Overview of Esnap

3.1 Metadata organization in ESnap

Figure 1. Metadata layout of Esnap

Esnap[16] use a novel metadata organization to
reduce the memory consumption, The main idea is that
only place the whole metadata on disk, and a cache
mechanism like file systems is used. As shown in
Figure 1, the whole COW table is stored in the start
area of the snapshot storage space instead of scattering
it over the space. The COW table entries are not
arranged according to the snapshot volume address, but
the original volume chunk number. So the original
volume address of each chunk need not be recorded
because it can be obtained from the table index. the
COW table is spited into fixed size (such as 4KB)
segments as cache blocks. The cache blocks are partly
cached in memory and linked into a hash table to
accelerate the metadata search. Request can be easily
computed to which COW table segment it belongs
based on its address. If the segment is not in the hash
table, the segment needs to be read from disk to main

memory and to be linked into the hash table. And then
can find the COW entry easily to determine whether
this block has been COWed. Two different metadata
cache replacement strategies were implemented in
ESnap: round robin and LRU.

3.2 Dependent snapshot

If there are many snapshots based on the same

origin, the write performance may be very poor, and
the COW data chunks stored in different snapshots are
redundant. In ESnap, dependent snapshot algorithm
was proposed to solve this problem. The main idea of
dependent snapshot is that it only copies the old data
chunk to the latest created snapshot for multi-snapshots
based on the same original volume for COW operation.
So one original volume write operation can only cause
at most one COW operation. In Esnap, the snapshots
which belong to the same origin were organized as a
chain. As shown in Figure 2, the write operations on
original volumes can only cause COW operation on the
recent created snapshot volume. For example, the user
updates chunk A at 9:15am, ESnap only copies A to S2
– the newest snapshot (LVM copies A to S1 and S2,
see Figure 2).

Figure 2. Dependent snapshots

4.The design of ESnapII

In order to solve the memory problem of ESnap, we

designed a novel global cached exception table, which
can be shared by all the snapshots in the same VG. We
also implement the snapshot write function for both
common snapshot and dependent snapshot.

4.1.Global Metadata Cache

In ESnapII, we use the same snapshot disk metadata

layout as ESnap, which stores the whole metadata in
the start area of the snapshot storage space and the
remained space is fully used for storing COW chunks.
The metadata of snapshot is divided into two parts: an
initializing bitmap and a COW table. For large origin,
there will be many COW entries stored in the snapshot
metadata area. But in memory, we use a global

672678

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on January 4, 2009 at 20:06 from IEEE Xplore. Restrictions apply.

metadata cache layout instead of the local cache
provided in ESnap. As shown in Figure 3, we split
COW table into many fixed size segments, which are
used as cache blocks. In addition to the continuous
COW entries, each cache block contains the device
number of snapshot which it belongs to and the start
index of the COW entries. If we cache this block, we
store it in memory and link into a global hash table
according to the snapshot device number and the start
entry index of this block. For example as shown in
Figure 3, after the original data of chunk H (chunk 7 in
origin) has been COWed to the Number 2 chunk of S1,
ESnapII will record the index 2 into the 7th entry of
the S1’s COW table and cache it in memory. Because
the 7th COW belongs to the COW entries segment
start with entry index 4, so the cache block contains the
device number of S1, start entry index(4) and the
content of entry 4-7. The initializing bitmap of each
snapshot is also preserved in main memory. The key
algorithm in snapshot system is for a given virtual
address, determining whether this address in origin has
been copied to the snapshot. This algorithm is
described as Algorithm 1:

Figure 3. Metadata layout of ESnapII

Procedure: find_exception(snapshot, addr, exception)
if !test_bit(snapshot, init_bitmap,

addr_to_segno(addr)) then
 initialize corresponding metadata segments
read metadata segment or do replacement
 link the segment into hash table
 return fail

else
hash_table.search(snapshot,addr, &exception);

 if fail then
read metadata segment or do replacement

from this snapshot
 link the segment into global hash table

hash_table.search(snapshot, addr,
&exception);

endif
if exception.addr = INVALID then

 return fail;

elseif exception.tag = COW then
return succ;

else
return WRI;

 endif
endif

end procedure

Algorithm 1. metadata search algorithm

Compared with ESnap which allocated a hash table
for each individual snapshot, this design has some
advantages when there are many snapshot volumes in
system. First, the memory for snapshot metadata is
predictable. Second, using this design, system can
support more snapshot of massive origin and the
memory resource consumption is not high. More
important, if the workload on each snapshot is not
balanced, the snapshot which becomes hotspot can
occupy more global metadata space, so that the hit rate
of the metadata cache can be improved. Obviously in
most condition, the balance of I/O requests on each
snapshot is impossible.

4.2 Snapshot Write implementation

Snapshot write function is complicated to design

because of the dependent chain. in ESnapII we have
implemented this function by which attaches a tag to
each COW table entry to distinguish between COW
chunks and snapshot updated chunks. In this way, a
snapshot write function is divided into 3 conditions. If
COW chunk is found in local snapshot S, it checks the
COW entry status. If the status is UPDATE, it writes
the request directly on S. If the status is COW, it
copies the COW chunk to S’s predecessor T first. If
not found, walk through the dependent chain and
ignore the COW chunk with status UPDATE, if found
the COW chunk at a newer created snapshot, copy it to
S, otherwise do a COW to copy the original data chunk
to S, and then write to S. The algorithm implemented
in ESnapII is described as follows:
Procedure: write_snapshot(buf, snapshot, addr)

origin = snapshot.origin;
snap = snapshot;

 snap1 = snapt.prev;
do_COW = find_exception(snap, addr,

&exception);
 if do_COW = succ and
exception.status=UPDATE then

write(buf, snapshot, exception.addr,
chunk_size);
 return;

endif

673679

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on January 4, 2009 at 20:06 from IEEE Xplore. Restrictions apply.

while do_COW <> succ and snap.next <> NULL
do

snap = snap.next;
do_COW = find_exception(snap, addr,

&exception);
 if exception.status = UPDATE then

continue
 endif

enddo
if snap1 <> NULL then

do_COW1=find_exception(snap1,addr,
&exception);

if do_COW1 = fail then
if do_COW = succ then

 copy COW chunk from snap to snap1;
else

find exception and do COW for
snap1;

endif
endif

endif
do_COW = find_exception(snapshot, addr,

&exception);
if do_COW = fail then

exception.status = UPDATE;
call cow_data(origin, snapshot, addr,

&excpetion);
find_exception(snapshot, addr,

&exception);
endif
write(buf, snapshot, exception.addr, chunk_size);

end procedure

 Algorithm 2. Snapshot writing algorithm.

5 Experiments

5.1 Experiment Setup

We setup our experiment on a PC with an AMD
Sempron 2500+, 1GB DDR memory and 2 Seagate
160G hard disks. The operating system is Redhat
Enterprise Linux AS 4 update 3 with Linux kernel
2.6.9-43. In all experiments we create a 10GB original
volume and the same size snapshot volumes. The
snapshot chunk size is 64KB. A benchmark tool,
Sysbench[17] is used to evaluate the performance of
ESnapII. the total file size in each experiment is 8GB.
The request size of work load generated by Sysbench is
16KB. To analyze the influence of the cache
mechanism, we set an 800K shared metadata cache
space for ESnapII. And the metadata memory
occupation threshold for ESnap is set as 8KB / 1GB
original volume space in every snapshot. We test four

snapshot systems in our experiments: the original
LVM1, ESnap round robin cache replacement strategy,
ESnap with LRU strategy and ESnapII with round
robin strategy, ESnapII with LFU strategy which are
represented by “LVM1”, “I-RR”, “II-RR”,“I-LRU”,
“II-LRU” respectively.

4.2 Evaluation and analysis

The origin sequential write performance was first
tested by creating an original volume and a snapshot
volume, and then writing 8GB data to the original
volume sequentially. Figure 4 shows the result of
throughput. We can see that RR, LRU and LFU have
comparative performance. This result is
comprehensible. The number of cache miss of
sequential writing to an empty snapshot can be
calculated easily. In this experiment, the COW chunks
is 8G / 64K = 128K, So 128K COW entries were read
and modified, and they are all continuous. Each cache
block contains 4K / 4B =1K COW entries, so 128K /
1K = 128 cache misses happened. ESnap and ESnapII
in each cache strategy must do 128 metadata
initializing, 128 cache block reading, and 128K
metadata segment writing. LVM doesn’t need
metadata initializing and reading, so the performance is
a little higher than ESnap and ESnapII.

Figure 5 shows the experiment result of snapshot
random reading test for a single snapshot. We also
create an origin and a single snapshot with 10GB.
There is no difference between ESnap and ESnapII for
reading a single snapshot. So we did not test reading
performance of ESnap in this experiment. From the
evaluation result, we can see the performance of LVM
is higher than others. Since LVM holds all the
metadata in memory, no metadata reading operations is
performed.

This phenomenon can be analyzed through a
simple calculation: As we say above, 8GB request data
may influence 128K COW entries, the total size of this
COW entries is 128K * 4 = 512K. But the total
metadata space we set is 200K, so more than half of
the metadata must be replaced from disk to memory.
But for LVM, the entire metadata can be stored in the
memory, so no extra operations which decrease the
performance are performed. We can see the
performance of LFU is almost equal to the RR. This is
caused by the coarse grain of the metadata which we
have illustrated above.

674680

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on January 4, 2009 at 20:06 from IEEE Xplore. Restrictions apply.

8800

9000

9200

9400

9600

9800

10000

10200

LVM I-RR I-LRU II-RR II-LFUo
ri
g
in

se
q
ue
n
ti
a
l
w
ri
ti

ng
(
KB
/
s)

Figure 4. original volume sequential writing
performance

10000

10500

11000

11500

12000

12500

13000

13500

LVM RR LFU

s
n
a
p
s
h
o
t

r
a
n
d
o
m

r
e
a
d
i
n
g
(
K
B
/
s
)

Figure 5. snapshot random reading performance

In order to observe how the dependent snapshot

impacts the performance of original volume writing,
we measured the origin writing under both 10 common
snapshots and 10 dependent snapshots. The benchmark
results are shown in Figure 6. The origin writing
performance under 10 dependent snapshots is much
higher than the traditional snapshots .The reason is that
each write request only causes 1 COW operation rather
than 10 COWs under 10 tradition snapshot. We also
test the rewrite performance of original volume write
under 10 snapshots. From Figure 10 we can see the
rewrite performance is a little higher than the write
condition under 10 dependent snapshots. The rewriting
operation in this two conditions can not cause COW
operations, so the performance can be close to the
performance of origin writing without snapshot.

We also test the sequential writing performance of
origin with both with 10 traditional snapshots and 10
dependent snapshots. The test results are shown in
Figure 7. Similar to the experiments above, the
performance is improved greatly under dependent
snapshot. And it is close to the writing performance on
origin under 1 snapshot. Of course, the performance is
not improved as theoretic analysis because of the
impact of the cache of hard disk and the file system.

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

RR LFU

o
r
i
g
i
n

r
a
n
d
o
m

w
r
i
t
i
n
g
(
K
B
/
s
)

Tra-write Tra-rewrite Dep-write Dep-rewrite

Figure 6. Original volume(with multi-snapshots)
random writing performance

0

2000

4000

6000

8000

10000

12000

LVM Esnap EsnapIIo
r
i
g
i
n

s
e
q
u
e
n
t
i
a
l

w
r
i
t
i
n
g

w
i
t
h

m
u
l
t
i
-

s
n
a
p
s
h
o
t
s
(
K
B
/
s
)

1 snapshot

10 common

10 dependent

Figure 7. Original volume (with multi-snapshots)
sequential writing performance

We measured the snapshot reading performance

under 10 snapshots to observe the influence of the
global shared metadata cache mechanism. We created
1 origin and 10 snapshots, after sequential writing on
the origin. We perform this reading test on one of the
snapshots. From the test results shown in Figure 8 we
can see the reading performance on ESnapII is higher
than ESnapII because of the shared global metadata
cache. From the illustration in section 3 we can
calculate that the snapshot to be read can use a
metadata cache space as large as 800K in ESnapII, so
every metadata can be preserved in memory without
being replaced out. But in ESnapII, We can easily
calculate the metadata cache threshold used by each
snapshot is only 80K. So only 1/8 requests can be
found in memory and cache replacement can take place
for 7/8 times. We also test the reread performance of
snapshot read in this condition to eliminate the
influence of the overhead caused by metadata
initialization and reading. We can see the rereading
performance for ESnapII is almost equal to LVM1
because its cache-hit-rate can be 100% as we
calculated above.

675681

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on January 4, 2009 at 20:06 from IEEE Xplore. Restrictions apply.

0

500

1000

1500

LVM I-RR I-LFU II-RR II-LFU

s
n
a
p
s
h
o
t

r
a
n
d
o
m

r
e
a
d
i
n
g

w
i
t
h

m
u
l
t
i
-

s
n
a
p
s
h
o
t
s

read reread

Figure 8. Snapshot random reading performance with
multi-snapshots

5. Conclusions

In this paper, we have proposed the design and
implementation of ESnapII, a writable dependent
snapshot system with a shared global metadata cache.
The shared metadata cache scheme can improve the hit
rate of metadata cache greatly. And using this strategy,
user can build more quantity and larger size volume
than previous work because of its low memory
consumption. We also present the implementation of
snapshot write both for traditional snapshot and
dependent snapshot. In addition, a flexible dependent
snapshot deleting algorithm is presented in this paper.
This improves the reliability and flexibility efficiently.
Experimental results show that the read performance of
the snapshot under multi-snapshots is improved
compared with ESnap. The new metadata cache
organization improves the scalability and availability
greatly and pays a little in read/write performance of
LVM.

6. Acknowledgements

This paper is sponsored by NSF of China
(90612001), 863 program of China(2008AA01Z401),
Education Ministry Doctoral Research Foundation of
China(20070055054), Science and Technology
Development Plan of Tianjin, (08JCYBJC13000).

7. References

[1] EMC Time Finder[M]. EMC corporation .
http://www.emc.com/products/product_pdfs/ds/timefinder_1

700-4.pdf,2000
[2] RAMAC Virtual Array
 http://www.redbooks.ibm.com/redbooks/pdfs/sg244951.pdf
[3] Hitachi:ShadowImage. :

http://www.hds.com/pdf/shadowimageR6.pdf, 2001-06
[4] StorageTek(tm)Snapshot Software.

http://www.storagetek.com

[5] HP Storageworks Business Copy EVA,
http://h18006.www1.hp.com/

[6] Hasentein M.LVM Whitepaper.SuSE Inc.
http://www.sistina.com,2001

[7] AJ Lewis.LVM HOWTO. Sistina Software, Inc,
2002-2003, Red Hat, Inc,2004-2005

[8] Xu Guangping, Wang Gang and Liu Jing,” “Design of
repetitious points incremental snapshots based on same
snapshot volume” ， Computer engineering and
applications, vol,no3, pp 413,113-115, January 2005.

[9] Li Zhong, Wang Gang and Liu Jing, “A Technology of
Implementing Sequential Points Snapshot in the Storage
Subsystem,” Computer engineering and applications, vol.
40, no. 9, pp. 18-20, 32, March 2004.

[10] Bhavana Shah, ”Disk Performance of Copy-On-Write
Snapshot Logical Volumes” master degree THESIS, The
University Of British Columbia, 2006.

[11] Liu Zhenjun, Xu Lu ,Feng Shuo and Yin Yang, “The
Design and Implementation of an Iterative Snapshot
System,” Jisuanji Gongcheng Yu Yingyong, vol. 42,
no.14, pp. 11-15, May, 2006.

[12] Yong Feng, Yan-yuan Zhang, Rui-yong Jia: SnapChain:
A Shared Snapshot Method for Data Version
Management. ISCA PDCS 2004: 264-269

[13] Zhao Zhen, Xie Chang-Sheng, Li Huai-Yang, Dong
Xiao-Ming, DCD-based block device snapshot system;
Mini-Micro Systems vol.26, no.12 : 2168-71,12,2005

[14] Sitaraman, S.; Krishnamurthy, S.; Venkatesan, S.
Srimani, P.K. “Byteprints: a tool to gather digital
evidence”; Proceedings. ITCC 2005 International
Conference on Information Technology: Coding and
Computing : (Vol. 1) 715-20 Vol. 1, 2005

[15] Weijun Xiao, Yinan Liu, Qing (Ken) Yang, Jin Ren and
Changsheng Xie "Implementation and Performance
Evaluation of Two Snapshot Methods on iSCSI Target
Storages," In NASA/IEEE MSST2006.

[16] Guangjun Xie, Genxi Fu, Yusen Li, Gang Wang,
Xiaoguang Liu, Jing Liu , "ESnap - A Cached Dependent
Snapshot System” , 2007 IEEE International Conference
on Integration Technology: pp 783-788 March,2007

[17] Sysbench, “SysBench: a system performance
benchmark” http://sysbench.sourceforge.net/

676682

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on January 4, 2009 at 20:06 from IEEE Xplore. Restrictions apply.

