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Abstract 
 

Snapshot technology, which has been widely used in 
data storage system for data protections and other 
tasks such as data mining and data cloning, is 
becoming one of the key technologies in storage area. 
ESnap[16] improved the performance, resource 
consumption and reliability compared with traditional 
LVM snapshot implementation. But it still has some 
problems: (i) high memory consumptions caused by 
snapshot metadata, (ii) not support writable snapshot. 
A novel optimization of Esnap called ESnapII, which 
alleviates all the above four difficulties is proposed in 
this paper. In detail, a global metadata cache shared 
by all snapshots belongs to the same VG is proposed to 
reduce the memory consumption; Future more, a 
writing mechanism is presented for both dependent 
and independent snapshot. Experiment results show 
that ESnapII has higher performance and lower 
resource utilization rate than previous work.. 
 
1. Introduction 
 

In recent years, snapshot is becoming a key 
technology in data backup and disaster recovery. Just 
as its name implies, snapshot is the instantaneous 
image of storage system in specific time. It can help 
the storage management system to perform online 
backup and other task just like data mining and data 
cloning. 

LVM (Logical Volume Manager) is a popular 
storage virtualization system on Linux platform. The 
main idea of LVM snapshot is COW (Copy-on-Write), 
which means that the data are only copied to snapshot 
before they are updated for the first time. But there are 
many problems in LVM snapshot in its resource 
occupation, performance and reliability, which depress 
the availability of systems. The main defects of the 
traditional LVM include (i) the size of the snapshot 
metadata is linear with its storage space; (ii) the write 

performance on origin which has multi-snapshots can 
be poor caused by the extra COW operations; (iii) the 
snapshot fails if the COW data overflows in its storage 
space. To solve these problems, ESnap[16] was 
developed in previous work, which used a novel 
metadata cache scheme to reduce the memory 
occupation. Esnap also applied dependent snapshot to 
improve the COW performance of origin.  

In this paper, an improved ESnap, called ESnapII, is 
presented. In order to reduce the memory occupation of 
snapshot, a shared cache scheme of multi-snapshots 
belongs to the same VG is designed. According to this 
scheme, snapshot metadata is stored on its local disk 
space initially. A dynamic schedule algorithm is used 
to load metadata into memory if needed, and all the 
metadata in memory from different snapshot shares a 
global metadata cache pool rather than local cache 
space applied in ESnap. This strategy can improve the 
I/O performance on snapshot under most kinds of 
workload because of the improvement of metadata 
cache hit rate. We also present a writing mechanism 
for both common snapshots and dependent snapshots. 
 
2. Related work 
 

Snapshot has been widely used in storage area such 
as data backup and version management. There are 
four main snapshot technologies: split-mirror[1][3], 
copy on demand[5], virtual view[2][4] and incremental 
snapshot[8][9]. Shah proposed an optimization of 
LVM snapshot [10], which improved performance 
18% - 40% compared with the traditional method. The 
Blue Whale system implemented iterative snapshot 
mechanism [11]. ESnapII can achieve the same object 
by creating two simultaneous dependent snapshots 
simply and setting the older one as a read-only volume.  

Yong Feng[12] introduced a snapshot facility at the 
block level, which minimized disk space requirement 
and write penalty of master volume. Our design of 
dependent snapshot in ESnap is similar to this work. 
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But we presented a novel metadata cache method in 
[16].  Zhen[13] recommended a system SSDCD 
(snapshot system on disk caching disk) implementing 
snapshot on the block device. This system 
implemented the function of snapshot on the block 
device with the method of COW. Sitaraman[14] built a 
consistent snapshot of file which used a logging 
mechanism to record the modifications to each disk 
block, and then employed fast algorithms to 
reconstruct the contents of the file as it existed 
sometime in the past. Xiao et al [1] proposed a 
quantitative performance evaluation of different 
snapshot methods at block device level. The layout and 
operation of snapshot metadata is one of the key 
problems in snapshot implementation. To the best of 
our knowledge, we are the first one to design and 
implement metadata cache management mechanism on 
snapshot. 
 
3. Overview of Esnap 
  
3.1 Metadata organization in ESnap 
 

 
 

Figure 1. Metadata layout of Esnap 
 

Esnap[16] use a novel metadata organization to 
reduce the memory consumption, The main idea is that 
only place the whole metadata on disk, and a cache 
mechanism like file systems is used. As shown in 
Figure 1, the whole COW table is stored in the start 
area of the snapshot storage space instead of scattering 
it over the space. The COW table entries are not 
arranged according to the snapshot volume address, but 
the original volume chunk number. So the original 
volume address of each chunk need not be recorded 
because it can be obtained from the table index. the 
COW table is spited into fixed size (such as 4KB) 
segments as cache blocks. The cache blocks are partly 
cached in memory and linked into a hash table to 
accelerate the metadata search. Request can be easily 
computed to which COW table segment it belongs 
based on its address. If the segment is not in the hash 
table, the segment needs to be read from disk to main 

memory and to be linked into the hash table. And then 
can find the COW entry easily to determine whether 
this block has been COWed. Two different metadata 
cache replacement strategies were implemented in 
ESnap: round robin and LRU.  

 
3.2 Dependent snapshot 

 
If there are many snapshots based on the same 

origin, the write performance may be very poor, and 
the COW data chunks stored in different snapshots are 
redundant. In ESnap, dependent snapshot algorithm 
was proposed to solve this problem. The main idea of 
dependent snapshot is that it only copies the old data 
chunk to the latest created snapshot for multi-snapshots 
based on the same original volume for COW operation. 
So one original volume write operation can only cause 
at most one COW operation. In Esnap, the snapshots 
which belong to the same origin were organized as a 
chain. As shown in Figure 2, the write operations on 
original volumes can only cause COW operation on the 
recent created snapshot volume. For example, the user 
updates chunk A at 9:15am, ESnap only copies A to S2 
– the newest snapshot (LVM copies A to S1 and S2, 
see Figure 2). 

 
 

Figure 2. Dependent snapshots 
 
4.The design of ESnapII  

 
In order to solve the memory problem of ESnap, we 

designed a novel global cached exception table, which 
can be shared by all the snapshots in the same VG. We 
also implement the snapshot write function for both 
common snapshot and dependent snapshot. 

  
4.1.Global Metadata Cache 

 
In ESnapII, we use the same snapshot disk metadata 

layout as ESnap, which stores the whole metadata in 
the start area of the snapshot storage space and the 
remained space is fully used for storing COW chunks. 
The metadata of snapshot is divided into two parts: an 
initializing bitmap and a COW table. For large origin, 
there will be many COW entries stored in the snapshot 
metadata area. But in memory, we use a global 
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metadata cache layout instead of the local cache 
provided in ESnap. As shown in Figure 3, we split 
COW table into many fixed size segments, which are 
used as cache blocks. In addition to the continuous 
COW entries, each cache block contains the device 
number of snapshot which it belongs to and the start 
index of the COW entries. If we cache this block, we 
store it in memory and link into a global hash table 
according to the snapshot device number and the start 
entry index of this block. For example as shown in 
Figure 3, after the original data of chunk H (chunk 7 in 
origin) has been COWed to the Number 2 chunk of S1, 
ESnapII will record the index 2 into the 7th entry of 
the S1’s COW table and cache it in memory. Because 
the 7th COW belongs to the COW entries segment 
start with entry index 4, so the cache block contains the 
device number of S1, start entry index(4) and the 
content of entry 4-7.  The initializing bitmap of each 
snapshot is also preserved in main memory. The key 
algorithm in snapshot system is for a given virtual 
address, determining whether this address in origin has 
been copied to the snapshot. This algorithm is 
described as Algorithm 1: 

 
 

Figure 3. Metadata layout of ESnapII 

Procedure: find_exception(snapshot, addr, exception) 
if !test_bit(snapshot, init_bitmap, 

addr_to_segno(addr)) then  
 initialize corresponding metadata segments 
read metadata segment or do replacement 
 link the segment into hash table 
 return fail 

else 
hash_table.search(snapshot,addr, &exception); 

 if fail then 
read metadata segment or do replacement 

from this snapshot 
 link the segment into global hash table 

hash_table.search(snapshot, addr, 
&exception); 

endif 
if exception.addr = INVALID then 

 return fail; 

elseif exception.tag = COW then 
return succ; 

else 
return WRI; 

 endif 
endif 

end procedure  
  

Algorithm 1. metadata search algorithm 
 

Compared with ESnap which allocated a hash table 
for each individual snapshot, this design has some 
advantages when there are many snapshot volumes in 
system. First, the memory for snapshot metadata is 
predictable. Second, using this design, system can 
support more snapshot of massive origin and the 
memory resource consumption is not high. More 
important, if the workload on each snapshot is not 
balanced, the snapshot which becomes hotspot can 
occupy more global metadata space, so that the hit rate 
of the metadata cache can be improved. Obviously in 
most condition, the balance of I/O requests on each 
snapshot is impossible.   

 
4.2 Snapshot Write implementation 

 
Snapshot write function is complicated to design 

because of the dependent chain. in ESnapII we have 
implemented this function by which attaches a tag to 
each COW table entry to distinguish between COW 
chunks and snapshot updated chunks. In this way, a 
snapshot write function is divided into 3 conditions. If 
COW chunk is found in local snapshot S, it checks the 
COW entry status. If the status is UPDATE, it writes 
the request directly on S. If the status is COW, it 
copies the COW chunk to S’s predecessor T first. If 
not found, walk through the dependent chain and 
ignore the COW chunk with status UPDATE, if found 
the COW chunk at a newer created snapshot, copy it to 
S, otherwise do a COW to copy the original data chunk 
to S, and then write to S. The algorithm implemented 
in ESnapII is described as follows: 
Procedure: write_snapshot(buf, snapshot, addr) 

origin = snapshot.origin; 
snap = snapshot; 

        snap1 = snapt.prev; 
do_COW = find_exception(snap, addr, 

&exception); 
        if do_COW = succ and 
exception.status=UPDATE then 

write(buf, snapshot, exception.addr, 
chunk_size); 
                  return; 

endif          
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while do_COW <> succ and snap.next <> NULL 
do 

snap = snap.next; 
do_COW = find_exception(snap, addr, 

&exception); 
                  if exception.status = UPDATE then 

continue 
                  endif 

enddo 
if snap1 <> NULL then 

do_COW1=find_exception(snap1,addr, 
&exception); 

if do_COW1 = fail then 
if do_COW = succ  then 

          copy COW chunk from snap to snap1; 
else 

find exception and do COW for 
snap1; 

endif 
endif 

endif 
do_COW = find_exception(snapshot, addr, 

&exception); 
if do_COW = fail then 

exception.status = UPDATE; 
call cow_data(origin, snapshot, addr, 

&excpetion); 
find_exception(snapshot, addr, 

&exception); 
endif 
write(buf, snapshot, exception.addr, chunk_size); 

end procedure 
  

 Algorithm 2.  Snapshot writing algorithm. 
 

5 Experiments  
 
5.1 Experiment Setup 
 

We setup our experiment on a PC with an AMD 
Sempron 2500+, 1GB DDR memory and 2 Seagate 
160G hard disks. The operating system is Redhat 
Enterprise Linux AS 4 update 3 with Linux kernel 
2.6.9-43. In all experiments we create a 10GB original 
volume and the same size snapshot volumes. The 
snapshot chunk size is 64KB. A benchmark tool, 
Sysbench[17] is used to evaluate the performance of 
ESnapII. the total file size in each experiment is 8GB. 
The request size of work load generated by Sysbench is 
16KB. To analyze the influence of the cache 
mechanism, we set an 800K shared metadata cache 
space for ESnapII. And the metadata memory 
occupation threshold for ESnap is set as 8KB / 1GB 
original volume space in every snapshot. We test four 

snapshot systems in our experiments: the original 
LVM1, ESnap round robin cache replacement strategy, 
ESnap with LRU strategy and ESnapII with round 
robin strategy, ESnapII with LFU strategy which are 
represented by “LVM1”, “I-RR”, “II-RR”,“I-LRU”, 
“II-LRU” respectively. 

 
4.2  Evaluation and analysis 
 

The origin sequential write performance was first 
tested by creating an original volume and a snapshot 
volume, and then writing 8GB data to the original 
volume sequentially. Figure 4 shows the result of 
throughput. We can see that RR, LRU and LFU have 
comparative performance. This result is 
comprehensible. The number of cache miss of 
sequential writing to an empty snapshot can be 
calculated easily. In this experiment, the COW chunks 
is 8G / 64K = 128K, So 128K COW entries were read 
and modified, and they are all continuous. Each cache 
block contains 4K / 4B =1K COW entries, so 128K / 
1K = 128 cache misses happened. ESnap and ESnapII 
in each cache strategy must do 128 metadata 
initializing, 128 cache block reading, and 128K 
metadata segment writing. LVM doesn’t need 
metadata initializing and reading, so the performance is 
a little higher than ESnap and ESnapII. 

Figure 5 shows the experiment result of snapshot 
random reading test for a single snapshot. We also 
create an origin and a single snapshot with 10GB. 
There is no difference between ESnap and ESnapII for 
reading a single snapshot. So we did not test reading 
performance of ESnap in this experiment. From the 
evaluation result, we can see the performance of LVM 
is higher than others. Since LVM holds all the 
metadata in memory, no metadata reading operations is 
performed. 

This phenomenon can be analyzed  through a 
simple calculation: As we say above, 8GB request data 
may influence 128K COW entries, the total size of this 
COW entries is 128K * 4 = 512K. But the total 
metadata space we set is 200K, so more than half of 
the metadata must be replaced from disk to memory. 
But for LVM, the entire metadata can be stored in the 
memory, so no extra operations which decrease the 
performance are performed. We can see the 
performance of LFU is almost equal to the RR. This is 
caused by the coarse grain of the metadata which we 
have illustrated above.  
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Figure 4. original volume sequential writing 
performance 
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Figure 5. snapshot random reading performance  
 
In order to observe how the dependent snapshot 

impacts the performance of original volume writing, 
we measured the origin writing under both 10 common 
snapshots and 10 dependent snapshots. The benchmark 
results are shown in Figure 6. The origin writing 
performance under 10 dependent snapshots is much 
higher than the traditional snapshots .The reason is that 
each write request only causes 1 COW operation rather 
than 10 COWs under 10 tradition snapshot. We also 
test the rewrite performance of original volume write 
under 10 snapshots. From Figure 10 we can see the 
rewrite performance is a little higher than the write 
condition under 10 dependent snapshots. The rewriting 
operation in this two conditions can not cause COW 
operations, so the performance can be close to the 
performance of origin writing without snapshot.   

We also test the sequential writing performance of 
origin with both with 10 traditional snapshots and 10 
dependent snapshots. The test results are shown in 
Figure 7. Similar to the experiments above, the 
performance is improved greatly under dependent 
snapshot. And it is close to the writing performance on 
origin under 1 snapshot. Of course, the performance is 
not improved as theoretic analysis because of the 
impact of the cache of hard disk and the file system.   
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Figure 6. Original volume(with multi-snapshots) 
random writing performance 
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Figure 7.  Original volume (with multi-snapshots) 
sequential writing performance 

 
We measured the snapshot reading performance 

under 10 snapshots to observe the influence of the 
global shared metadata cache mechanism. We created 
1 origin and 10 snapshots, after sequential writing on 
the origin. We perform this reading test on one of the 
snapshots. From the test results shown in Figure 8 we 
can see the reading performance on ESnapII is higher 
than ESnapII because of the shared global metadata 
cache. From the illustration in section 3 we can 
calculate that the snapshot to be read can use a 
metadata cache space as large as 800K in ESnapII, so 
every metadata can be preserved in memory without 
being replaced out. But in ESnapII, We can easily 
calculate the metadata cache threshold used by each 
snapshot is only 80K. So only 1/8 requests can be 
found in memory and cache replacement can take place 
for 7/8 times. We also test the reread performance of 
snapshot read in this condition to eliminate the 
influence of the overhead caused by metadata 
initialization and reading.  We can see the rereading 
performance for ESnapII is almost equal to LVM1 
because its cache-hit-rate can be 100% as we 
calculated above. 
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Figure 8. Snapshot random reading performance with 
multi-snapshots 

 
5. Conclusions 
 

In this paper, we have proposed the design and 
implementation of ESnapII, a writable dependent 
snapshot system with a shared global metadata cache. 
The shared metadata cache scheme can improve the hit 
rate of metadata cache greatly. And using this strategy, 
user can build more quantity and larger size volume 
than previous work because of its low memory 
consumption. We also present the implementation of 
snapshot write both for traditional snapshot and 
dependent snapshot. In addition, a flexible dependent 
snapshot deleting algorithm is presented in this paper. 
This improves the reliability and flexibility efficiently. 
Experimental results show that the read performance of 
the snapshot under multi-snapshots is improved 
compared with ESnap. The new metadata cache 
organization improves the scalability and availability 
greatly and pays a little in read/write performance of 
LVM. 
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