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ABSTRACT 

There has been a large amount of research on early termination 

techniques in the area of web search and information retrieval. 

Such techniques return the top-k documents without scanning and 

evaluating the full inverted lists of the query terms. Thus, they can 

greatly improve the efficiency of query processing. However, 

most existing research on early termination does not consider the 

impact of term proximity, i.e., the distance between term 

occurrences in a document, which has recently been integrated 

into a number of retrieval models to improve effectiveness. Only a 

limited amount of work has focused on how to improve query 

processing efficiency in this case. 

In this paper, we propose new early termination techniques for 

efficient query processing for the case where term proximity is 

integrated into the retrieval model. We propose new index 

structures based on a term-pair index, and study new document 

retrieval strategies on the resulting indexes. We perform a detailed 

experimental evaluation on our new techniques and compare them 

with the existing approaches.  Our experimental results on large-

scale data sets show that our techniques can significantly improve 

the efficiency of query processing. 

Categories and Subject Descriptors 

H.3.3 [Information Search and Retrieval]: Search process; 

H.3.4 [Systems and Software]: Performance evaluation 

(efficiency and effectiveness) 

General Terms 

Algorithms, Performance, Experimentation 

Keywords 

Top-k, Term proximity, document structure, term-pair index  

 

1. INTRODUCTION 
A lot of research in web search and information retrieval has 

studied how to improve the efficiency of document retrieval, 

using techniques such as massive parallelism, caching, inverted 

index compression and early termination. We focus on one 

important class of optimizations, early termination techniques 

(also called dynamic index pruning techniques), which are widely 

used in IR systems and large search engines [31]. 

To better understand early termination techniques, we first look at 

the most basic index structure, the inverted index [31, 37]. An 

inverted index consists of many inverted lists, each of which is a 

sequence of postings. Each posting contains a document ID 

(docID), plus additional information such as the term frequency in 

the document, the exact positions of the occurrences, and their 

context (e.g., in the title, in anchor text, or in URLs). Typically the 

postings in each inverted list are sorted by their docIDs to achieve 

good index compression [31]. To process a query, a search engine 

could traverse the complete inverted lists for all relevant terms, 

calculate relevance scores for all documents in these lists, and 

finally return the top-k (e.g., k = 10) documents having the highest 

scores. However, such exhaustive evaluation requires significant 

computing resources and may greatly increase query response 

time. 

To overcome this problem, many early termination techniques 

have been proposed [1, 2, 5, 10, 13, 17, 21, 24, 30, 31, 34, 35, 36]. 

The common goal of these is to speed up query processing by 

avoiding the processing of all documents in the relevant lists, and 

instead evaluating only a small subset. This is usually done by 

employing alternative index organizations such that during a 

traversal of these structures, the most promising documents (those 

likely to have the highest scores) are evaluated first while other 

documents may be evaluated later only as needed. Once a certain 

amount of documents has been processed, it is often possible to 

terminate the query evaluation and return the top-k results, 

without even considering the less promising documents. 

The features being used to evaluate the documents (i.e., calculate 

the document scores) play a crucial role in the efficiency of early 

termination techniques, since they determine the best organization 

and ordering of the index, and thus the point at which early 

termination can occur. Most existing research on early termination 

techniques treats a document as a bag of words and evaluates 

queries using the following two kinds of features: (a) term-

dependent features, e.g., within-document frequencies [21], or 

term-based IR scores or impacts [2]; and (b) term-independent 

features, e.g., Pagerank or other static ranks or scores [4, 17, 34] 

that measure the overall quality, importance, or popularity of a 

document (based on analysis of links, content, query logs, or 

traffic data in a preprocessing step). We note that while term-

dependent scores are query-related, they are here only based on 

each separate term instead of the whole query, and thus do not 

depend on the relative positions or distances between terms within 

a document. 
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However, overall scores may also depend on the distance between 

the query terms in the document, called term proximity (TP), such 

that terms occurring close to each other often result in a higher 

score. In fact, the real search engine [4] has integrated the term 

proximity into their ranking system (although the details are not 

provided in [4]). In addition, a lot of recent research [7, 8, 15, 26, 

28] has shown that retrieval effectiveness can be greatly improved 

by integrating term proximity scores into the retrieval model. 

Unfortunately, there is much less research on how to improve 

query efficiency for such proximity-aware retrieval systems, with 

the exception of [24, 35, 36]. In the following, we will refer to 

early termination (ET) techniques that consider term proximity 

(TP) as TP-ET methods, and refer to those without TP as NTP-ET 

methods. We note that while real search engines often integrate 

into their overall scoring function a variety of other features 

beyond static ranks, term-based IR scores, and query-based term 

proximity scores, in this paper we only focus on these three kinds 

of scores, which we call SR, IR, and TP scores, respectively. 

Thus, the study of TP-ET techniques is interesting and important 

due to the importance of term proximity factors in state-of-the-art 

ranking functions. However, the index structures and retrieval 

strategies of existing NTP-ET techniques can not be directly 

applied to TP-ET methods. The main reason is that each inverted 

list is only associated with one particular term and does not 

consider any other terms, while the TP score is based on the entire 

query and therefore depends on the interaction between several 

query terms. Independently ordering each relevant inverted list of 

a given query in some order, say by term scores, may result in a 

fairly non-monotonic and almost random distribution of the TP 

scores that makes early termination impossible for most queries. 

Thus, the main challenge for TP-ET methods is how to consider 

the impacts of all three kinds of scores to achieve effective early 

termination and thus efficient query processing. 

In this paper, we study new early termination techniques that 

improve retrieval efficiency for the case where term proximity 

information is taken into account in the retrieval model. Our goal 

is to create a new auxiliary index structure and mechanism that 

can be used in IR systems to speed up query processing without 

reorganizing their entire structure. In particular, we create an 

additional term-pair index for cases where certain pairs of terms 

occur close to each other in a document and propose new retrieval 

strategies for the resulting indexes. The new index organization 

implicitly moves documents with high term proximity scores 

towards the front of the query processing pipeline, without 

disturbing the normal indexes too much. Thus, the documents 

with the highest overall scores are likely to be evaluated first 

during query processing, resulting in effective early termination. 

Our experimental results show that our methods can achieve 

significant improvements in efficiency over existing methods. 

2. BACKGROUND AND RELATED WORK 
We refer to [31, 37] for basic background on indexing and query 

processing in search engines. 

2.1 The Ranking Functions 
As mentioned in Section 1, we focus on the following three types 

of scores: SR, IR and TP scores. Almost none of the existing 

research on early termination techniques has studied other 

additional types of scores beyond these, though real search 

engines may do so. In fact, most ET techniques are based on only 

one or two of these. For example, [2, 21] uses only the IR score 

while [4, 17, 34] considers both SR and IR scores and [24] studies 

both IR and TP scores. There are only a few ET techniques [35, 

36] that have integrated all three scores into their ranking 

functions. The overall document score for a particular ET method 

is often evaluated as a linear weighted sum of all types of scores 

considered by it, and the general ranking function for most of the 

ET techniques is as follows: 

  (   )      ( )      (   )      (   ) (2.1) 

where S(d, q) is the overall score of the document d with respect 

to the query q, SR(d) is the SR score of the d, IR(d, q) and 

  (   ) are respectively the IR and TP scores of the document d 

with regard to the query q, while  ,  , and   are three non-

negative parameters (       ). Usually all of the SR, IR 

and TP scores are normalized into the range [0, 1]. Formula (2.1) 

can be adapted in various ways by tuning  ,  , and  . For 

example, ranking functions for methods that only use SR and IR 

scores can be modeled by setting    . 

There has been a lot of research on the calculation of each of the 

three types of scores. The SR score could be computed using the 

Pagerank method in [4] but could also incorporate various other 

measures of document quality or importance. One popular way to 

calculate the IR score is the BM25 formula in [23], which has 

been widely used in IR systems. However, the calculation of TP 

scores is often more complicated. It does not depend only on a 

particular term but on the entire query. Many approaches [7, 8, 15, 

26, 28, 22, 24, 35, 36] have been proposed to calculate TP scores. 

Most methods assume the TP score of a pair of occurrences to be 

inversely proportional to the square of their distance within the 

document, but the concrete implementations are different from 

each other and the ways to combine such pair TP scores into the 

document TP score are also different. However, a popular way is 

to first slide a window with a certain size w over the document, 

and then each time calculate the TP score for a term pair 

<       based on only the contributions from the occurrences of 

   and    within that window. Then all such pair scores are 

combined using a weighted sum, to obtain the final document TP 

score. 

The ranking functions of practical search engines also take into 

consideration the document structure and the context of term 

occurrences, e.g., whether they are in the title, or in the URL, for 

better result quality [4]. Like [4, 35], we distinguish the following 

four different contexts (we call them fields) of a web document: 

title, URL, anchor (text), and body fields, where the anchor text 

refers to the visible, clickable text (in other pages) in a hyperlink 

pointing to the page, while the body field refers to the rest of the 

web page (anything not in the other three fields). 

2.2 Early Termination without TP 
Ideally, an early termination technique stops evaluating 

documents immediately once the top-k documents have been 

discovered. In practice, we cannot immediately tell if a document 

we just encountered will be in the final top-k, and thus we have to 

continue evaluating new documents until we are sure that no new 

document can achieve a higher score than any document in the 

current top-k list. In addition, we often require that the k 

documents in the result list (achieved by the early termination 

techniques) are returned in the same order as without early 

termination.  



We note that although many early termination methods may relax 

the above restriction allowing for approximate top-k results [5, 10, 

17, 32] (e.g., the result list contains 99% of the real top-k 

documents on average) as long as a certain retrieval precision can 

be reached, we only focus on exact top-k query processing, that is, 

all top-k results must be returned and in the correct order.  

Index Reorganization: Most early termination techniques 

reorganize the inverted lists in some way that is ordered by certain 

types of scores, such that the most promising documents are 

skewed towards the beginning of the lists, and thus evaluated 

earlier than other documents. In particular, the method in [21] 

does so based on the within-document frequencies (which are 

assumed to dominate the IR scores). The method in [4] stores the 

postings (hits) of a list into two sets of inverted barrels: one set for 

the hit lists that include title or anchor hits and another set for all 

hit lists. The method in [2] partitions an inverted list into m 

segments in each of which all documents are of the same impact 

values (which are essentially quantized IR scores) and sorted by 

docIDs. The segments themselves are sorted in descending order 

of their impacts. The approach in [17] partitions the documents in 

a list into two segments based on their IR scores, and the segment 

with the higher scores is evaluated first. All documents within 

each segment are sorted in descending order of their SR scores. In 

this way, the documents with the highest IR and SR scores are 

located either in the top segment or the beginning of the bottom 

segment. The very recent research in [34] sorts a list by a 

combination of the so-called UBIR  score and the Pagerank (or 

static rank), which are both term-independent information. 

Retrieval Strategies: Many evaluation strategies [2, 5, 14, 17, 19, 

30, 32, 34, 35, 36, 37] have been proposed in the IR and web 

search areas, and they can be roughly divided into the following 

three categories: document-at-a-time (DAAT) [5, 14, 17, 30, 32, 

35, 36, 37], term-at-a-time (TAAT) [19, 30, 37] and score-at-a-

time (SAAT) [2]. DAAT evaluates a document by considering the 

contributions of all query terms, before it deals with the next 

document; TAAT evaluates all documents in the inverted list of 

one term before it does so for the next term; SAAT is only 

suitable for indexes sorted by impacts [2]. While TAAT is widely 

used in the traditional IR systems and SAAT can achieve good 

performance in certain cases [37], DAAT has been shown to be 

able to achieve very good query performance in many cases 

especially with certain optimizations [5, 14, 17, 30, 32, 35, 36, 

37]. DAAT often requires a smaller run-time memory size while 

the other two methods need more memory to maintain 

intermediate scores during query processing. Please refer to [2, 5, 

37] for a detailed comparison among those strategies. 

We note that many retrieval algorithms have also been proposed 

in the database area, besides the IR and web search areas, e.g., 

Fagin's Algorithm (FA) [11], the imporved Threshold Algorithm 

(TA), and the No Random-access Algorithm (NRA) [12]. The 

main difference between TA and NRA is that the former allows 

random access on the inverted list, while the latter only allows 

sequential access (Please refer to [13] for a survey of these 

methods). 

2.3 Early Termination with TP 
There are only a few early termination approaches [24, 35, 36] 

(and [4] although the concept of early termination was not 

explicitly presented in it) that integrate the TP information into 

their retrieval models. They adopt different strategies to overcome 

the above problem, where the methods in [4, 35] exploit the 

document structure to reduce the upper bound of the unseen 

scores, while [24, 36] implicitly move the documents with high 

TP scores to the front of the list by creating new term pair 

indexes. In particular, the method in [4] groups the documents of 

a list into two sets where one set is actually a subset of the other 

one and contain only those hit lists that include title or anchor hits. 

That is, they assume that the occurrences in the title or anchor 

fields imply high IR scores and therefore should be evaluated 

first. The method in [35] also exploits the document structure 

information to organize the indexes. It partitions each list into the 

following two segments: one top segment containing the postings 

only for the occurrences within the three fields of title, anchor 

text, and URL, and another bottom segment containing the 

postings only for those within the body field. During query 

processing, it first processes the entire top segment, and then 

attempts to achieve early termination in the second segment, 

based on the fact that parts of the TP scores (associated with the 

title, anchor and URL fields) have been calculated in the top 

segment and thus the upper bounds of the TP scores for all unseen 

documents in the second segment can be reduced.  

In contrast, [24] and [36] approach the problem from another 

angle: They create additional indexes for pairs of terms in the 

document and exploit those indexes to implicitly move documents 

with higher TP scores to the front of the lists. In particular, [24] 

creates additional indexes for all possible term pairs, i.e., pairs 

with any possible distances between each other within the same 

document, while [36] only creates such indexes for the phrases. 

However, [24] sorts indexes only by TP scores, and does not 

consider the impact on index organization due to SR and IR 

scores (although its CL method evaluates the document by both 

IR and TP scores). In addition, the size of its additional pair 

indexes is huge as it builds indexes for all combinations of terms 

of a document (while [24] mentions a static pruning method to 

reduce this index size, the details of the method are not provided). 

Moreover, [24] does not consider the SR score and is thus not 

applicable to cases such as the web where overall document 

quality and importance is often as important as term-based scores. 

Finally, it is interesting that [36] has shown that we can improve 

efficiency greatly by creating additional extended hit-list only for 

some selected phrases in the document, without exploding the 

index size. However, [36] does not study the potential benefits of 

using term pairs with larger distances, which may improve the 

query efficiency a lot more although it may complicate both index 

construction and document retrieval (the details will be discussed 

in later sections). Moreover, neither of [24] and [36] consider the 

document structure, which as discussed above has been used in 

the real search engines [4]. In addition, both of them have to do 

full evaluation of documents that is desirable to be avoided. 

2.4 Other Related Work 
Compared to the above dynamic pruning techniques, static 

pruning techniques (e.g., [6, 20]) try to predict and discard certain 

less important parts of the index structures as the indexes are 

being built. Such methods achieve high retrieval efficiency by 

sacrificing on search quality for some queries. The method in [3] 

creates the auxiliary indexes for firstword-nextword pairs to speed 

up the phrase query. However, it is not directly suitable to the 

non-phrase query. The pre-aggregation techniques [16] first pre-

aggregate the intersections of the lists and then simultaneously 

process the intersection list and the term lists to speed up the 

retrieval. Interestingly, [18] also uses the intersection lists as an 



intermediate level of a three-level caching structure to speed up 

query processing. However, the intersection lists in [16, 18] do 

not contain the position information of terms. Some other early 

termination techniques [5, 32] focus on reducing the number of 

full evaluations. Their main idea is to first evaluate all documents 

using approximate scores and then perform the full evaluation 

only on the documents with the highest approximate scores. 

However, we often calculate all of the SR, IR and TP scores 

unless we can safely avoid doing so without loss of accuracy. 

Finally, early termination strategies are also affected by caching 

policies [18, 25, 29]. In this paper, we only focus on dynamic 

pruning techniques to get the exact top-k query results and do not 

consider pre-aggregation and caching policies. 

3. CONTRIBUTIONS OF THIS PAPER 
In this paper, we study and evaluate efficient document retrieval 

techniques for the case where term proximity information is 

integrated into the retrieval models. Our goal is to provide the 

search engine with a separate component to speed up the query 

processing greatly while not incurring much overhead of storing 

the extra indexes. Our main contributions are as follows: 

(1) We propose new index structures by creating additional term 

pair indexes for pairs of terms that are within certain distances 

to each other in the documents, and study corresponding 

retrieval strategies for the resulting indexes. We also proposed 

new methods to reduce the index size of the term pair indexes.  

(2) We integrate the impacts of document structure information, 

i.e., the context of term occurrences, into our retrieval models. 

Although most of the existing research on early termination 

techniques does not consider such information, the real search 

engine [4] does so. In particular, we take into consideration 

the following four fields of the document structure: title, 

anchor, URL and body fields.  

(3) We propose the new methods to avoid full evaluations on the 

TP scores by using our term pair indexes. Thus our methods 

can not only reduce the number of documents to be evaluated 

during query processing, but also save the computation cost 

by avoiding unnecessary full evaluations.  

(4) We compare our algorithms with other existing techniques on 

large scale data sets. Our experimental results show that our 

approach can consistently improve the query efficiency 

significantly while also achieving a reasonable tradeoff 

between query efficiency and index size.  

4. OUR ALGORITHMS 
Our goal is to improve the query efficiency especially on the 

proximity-aware retrieval models by creating for the search 

engines an auxiliary index component (term pair indexes) which 

can be easily plugged in the existing systems. Therefore, our new 

index architecture is composed of the normal indexes, which may 

be organized by any methods discussed in Section 2, and the term 

pair indexes. We note that the new pair indexes do not change the 

index organization of the normal inverted indexes.  

The main idea of our algorithms is: we exploit the additional term 

pair indexes to implicitly move the documents with the highest TP 

scores on top of other documents in the normal indexes. Recall 

that the normal indexes are not affected by the pair indexes and 

often have been organized by other early termination techniques 

discussed in Section 2, such that the documents with the highest 

SR or IR scores are located to the beginning of the normal 

indexes. Therefore, under our new architecture, the most 

promising documents (with the highest integrated scores of SR, IR 

and TP scores) are organized as the first tier of documents to be 

evaluated and thus the early termination can be expected.  

A query under the new architecture is then processed as follows: 

when the engines receive a query, they first load and process the 

relevant lists from the pair indexes (as long as they contain such 

relevant lists); they then load the normal inverted indexes and 

continue to evaluate the documents of these lists until the top-k 

results can be safely returned without scanning the entire lists. 

4.1 The Ranking Function 
Our ranking function is based on the formula (2.1) discussed in 

Section 2. However, we also integrate into it the document 

structure information for the following four fields of a web page: 

title (T), URL (U), anchor (A) and body fields (B). In particular, 

we represent the IR score (or the TP score) as the weighted sum of 

its partial scores in all of the four fields (we note that unlike IR 

and TP scores, the SR score is not affected by the document 

structure). Therefore, our ranking function can be described as 

follows: 

 

 (   )      ( )    ∑ (     (     ))

  (       )

        

                                      ∑ (     (     ))

  (       )

 

(4.1) 

where   is the weight for the  th field, the   (     )  and the 

  (     ) are respectively the partial IR and TP scores of the 

query   in the  th field, while other symbols are of the same 

meanings as those in the formula (2.1).  

We now discuss how to calculate various scores. The SR scores 

can be achieved in the exact same way as in [35, 36]. The IR 

partial scores can be calculated by the BM25 formula [23] except 

that they are computed based on the term occurrences in a 

particular field instead of those in the entire document. The basic 

process of calculating the document TP score has been discussed 

in Section 2 and is based on all pair-wise occurrences of query 

terms within a fixed-size window. The scoring function for a 

particular pair-wise occurrence can be derived from the scoring 

models in [35, 36, 24, 7, 8] and one of their common features is 

that such a score is inversely proportional to the square of the 

distance between terms as follows: 

   (     )   (
 

      (     )
 ) (4.2) 

where   (     )  is the TP score for one particular pair-wise 

occurrence of the terms   and    , while  () is a linear function of 

the square of the distance     (     ) of the two terms. The value 

of   (     ) is also affected by the ordering of the occurrences in 

the document and that in the query. For example, given a query 

“New York”, we will assign a higher   (     )  score to the 

occurrence of “New York” than that of “York New”. This can be 

achieved by representing the     (     ) as followings 

     (     )  |(   
     

 )  (   
 
    

 
)|  (4.3) 

where    
 and     

 are the positions of    and    in the document 

while    
 

and    
 

are their positions in the query.  



4.2 Building New Indexes 
In this subsection, we first describe how we build the term pair 

indexes and then discuss how they are combined with various 

index structures of the normal indexes. 

Building term pair indexes: Given all of the relevant documents 

to a query, our goal is to create additional indexes for a small 

subset of them that contain the close-by term pairs and thus 

potentially have the highest TP scores. In particular, given a term 

pair (     ) (which is different from another pair (     )), we first 

identify the documents which contain at least one pair-wise 

occurrence of them with     (     )   , where     (     ) is 

derived from the above formula (2.4) and   is a certain distance 

value, say    . The possible forms of such occurrences are: 

     (      ) ,       (      ) ,         (      ) , and 

          (      ), where   ,   ,    can be any other terms in 

the document but    and   . We then build an inverted list (we call 

it term pair list) for the pair (     ) based only on the above 

identified documents. The basic form of such a term pair list with 

n postings is shown in Figure 4-2. 

 

Figure 4-2  The basic form for a term pair list of n postings 

The term pair list is then a sequence of postings, each of which 

contains a docID, the term pair frequency    , and all of the     

occurrences. Unlike the posting in the standard inverted list 

discussed in Section 1, which always records the occurrences of a 

single term in a document, the posting in the term pair list does so 

for either one or both of terms in the query, according to the 

distances between them. In particular, we treat two consecutive 

occurrences of them with     (     )    as a single occurrence 

of the pair, while we encode those with larger distances as two 

separate occurrences. Thus each occurrence can be represented as 

a code of (T, P), where T stands for one of the following types of 

the occurrences: (1)    and    appear together (and in the order of 

(     ) rather than (     ) ) with     (     )    and     , (2) 

   appears by itself (i.e., its      to the closest following    is 

greater than  ), (3)    appears by itself (i.e., its      to the closest 

previous    is greater than  ); while P stands for the position of 

the first term in case (1), or the position of the term in the other 

two cases. Thus the value of     is the number of all of such 

occurrences. Please note that we build only a single list for the 

pair (     ), while we treat (     ) and (     ) as different pairs 

and will create separate term pair lists for them. 

From the above we can see that on one hand, we never maintain 

any information in the term pair list for the documents that 

contain no pairs of (     )  with     (     )   , while on the 

other hand, once a document   contains such a close-by pair, the 

information for all occurrences of both terms within   will be 

encoded into the list. The reason we keep all such information is 

to provide the flexibility for the search engines to employ various 

ranking functions and evaluation strategies on the term pair 

indexes. Once the engines fix such settings, a non-trivial amount 

of redundant information in the term pair indexes can be safely 

removed without downgrading the query performance much 

(details will be discussed soon). 

Cooperation with normal indexes: Before being combined with 

the above term pair indexes, the normal inverted indexes often 

have been reorganized by a variety of other early termination 

methods discussed in Section 2 (especially in Subsection 2.2).  In 

this paper, we mainly focus on the following three kinds of index 

organizations of the normal inverted indexes: (1) the standard 

inverted indexes structure [31] (which we call STD indexes) 

where postings are sorted by docIDs or SR scores (as discussed in 

Section 2, the latter ordering can be easily transformed into the 

former one with docID reassignment in the order of the SR 

scores); (2) the index structure in [17] (which we call HL indexes) 

where both SR and IR scores are considered, resulting in the two 

segments with high and low IR scores respectively, in each of 

which all postings are sorted by SR scores;  (3) the index structure 

in [35] (which we call structured or STR indexes) where all of SR, 

IR and TP scores are considered and the indexes are also divided 

into two segments (the TAU segment and the B segment) but 

according to whether the occurrence happens in the TAU (title, 

anchor and URL) fields or in the B (body) field. We note that 

although there are some other index structures (e.g., sorting 

postings only by the TP scores [24]) that may have been used for 

the normal inverted indexes, the above three ones, i.e., STD, HL, 

and STR, can to some extent represent most of the index 

organizations used in the state-of-the-art early termination 

techniques with or without consideration of the TP information. 

For example, as discussed in Section 2, the HL structure can be 

easily converted to a special case of the structure in [2], while 

both STD and HL are considered for the methods in [36].  

4.3 Retrieval Strategies 
In this subsection, we discuss the retrieval process for our new 

index architecture (using the two-term query as an example), 

where the normal indexes are organized in either one of STD, HL 

and STR index structures.  

Given a query   of (     ), our retrieval process is divided into 

the following two phases:  

(1) In the first phase, we check the term pair indexes to see if 

they contain the list       for (     ) . If they do not do so, we 

skip the rest part of this phase and go directly to the second 

phrase; otherwise we load       into the memory. We then 

load the list        if it also exists in the term pair indexes. 

After that, we process the entire        and         evaluating 

appropriate documents in them, resulting in a temporary top-

  list in which all documents are of their complete scores and 

do not need to be evaluated again in the second phase. 

(2) In the second phase, we load the normal indexes and 

continue to evaluate new documents in them (skipping the 

documents that have been evaluated in the first phase) in a 

DAAT manner until the early termination can be achieved.  

From the above, we can see that all documents with the high TP 

scores have been completely evaluated in the first phase and put 

in the temporary top-k list. As a result, the upper bound of the TP 

scores for all documents in the second phrase is greatly reduced 

since none of them contain close-by pairs. Thus as long as the 

index structure of the normal indexes (in the second phase) has 

the property that the documents with the high SR and IR scores 
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are also located at the beginning of the lists, the quick early 

termination in the second phase can be expected in such cases 

since the early termination condition discussed in Subsection 2.2 

can be quickly satisfied after a small amount of documents have 

been evaluated.  

Interestingly, the term pair indexes can not only be used to reduce 

the number of documents to be evaluated (since only a small 

proportion of the lists need to processed before early termination), 

but also be exploited to save the number of full evaluations on TP 

scores as follows: when a new document is encountered, we often 

have known its exact SR and IR scores (that can often be pre-

computed since their values do not depend on other terms in the 

query) and the upper bound of its TP score, therefore we can 

easily get the upper bound of its overall document score, which 

can then be compared with the score of the kth document in the 

current top-k list. Once we find its overall score is smaller than 

that of the kth document, we can safely discard it and thus avoid 

the expensive full evaluation of its TP score.   

For the queries with more terms, we present a very simple method 

by taking advantage of the nonexistence of term pair lists as 

follows: if there are no existing term-pair lists for any pair of the 

query (              ) (and this is not due to the term-based 

pruning of the lists), we then know that there are no documents 

with very high TP scores and therefore the upper bound of the TP 

score for all unseen documents can be reduced and thus the early 

termination may be achieved.    

4.4 Index Size Reduction 
The term pair indexes can be pruned in either a term-based 

manner and in a posting-based manner. First, we do not need to 

build the pair lists for all term pairs based on the rareness of the 

terms and the pairs. For example, if the normal inverted lists for 

both terms are very short (which means both of them are rare 

terms), we do not need to build the pair list for them since it will 

not take much time to process even the whole normal lists of 

them. In contrast, it is always desirable to build the pair list for a 

rare pair that is composed of two common terms since the pair list 

will then be much shorter than either of the term lists.  

Alternatively, another interesting way to reduce the size for the 

term pair indexes is to prune the number of postings stored in each 

term pair list, without affecting the precision of the top-k results. 

As discussed above, if the ranking functions (and its parameters) 

of the retrieval models are fixed, we do not need to store a lot of 

information in the current term pair lists, while we can still 

achieve the same results in the first phase of our current retrieval 

models. This can be achieved by the following: we pre-compute 

the top-k list for all documents of the term pair lists (those 

processed in the first phase) during the index construction period 

and thus we only need to store the resulting top-k list for those 

documents in the term pair list, along with a hash table specifying 

which documents in the lists have been processed and thus will 

not be reevaluated in the second phase. In our experiments, this 

idea is slightly modified since we want to keep the ranking 

functions as flexible as possible. In particular, for each posting in 

a term pair list, we only keep the position information for close-by 

pairs while we discard the position information of the independent 

occurrences of the single terms (we do this only for the body field 

and still keep all position information in the other three fields 

since the body field dominates the size). Our later experiments 

will show that the index size can be greatly reduced by using the 

above various optimizations. 

In addition, on one hand, we can reduce the size of the resulting 

pair indexes even further using a better compression approach 

(e.g., PForDelta in [33]) to compress docIDs and frequencies; 

while on the other hand, we can also improve the compression 

performance for positions, based on the observation [32] that the 

clustering property existing in the single-term occurrences can 

lead to better compression for positions. In fact, we may expect to 

achieve even better compression ratio since the correlation 

between consecutive pairs may be stronger than that between 

successive single terms.  

5. EXPERIMENTS 

5.1 Experimental Setup 
For our experiments, we use the following three data sets: the 

widely used TREC GOV (1.25 million web pages), TREC GOV2 

(25.2 million web pages), and a newly distributed TREC 

ClueWeb09 data sets [9] which consists of 1.04 billion web pages 

in ten languages while only those in English, about 500 million 

pages, are used in our experiments. For the evaluation on the 

GOV data set, we use the trec2004mixed query set which contains 

225 queries and 51 two-term queries among them; for the 

ClueWeb09 data set, we use the query track (we call trec2009mq) 

of TREC2009 which contains 40,000 queries and 14,620 two-term 

queries among them. For the GOV data set, we use a single 

machine with Dual 2.13 GHz Intel CoreTM2 CPU, 4GB RAM, and 

2*500 GB local SATA disk. For the ClueWeb09 data set, we use 

40 machines, where each machine has Quad 2.50 GHz Intel Xeon 

CPU, 16GB RAM, and 1.5 TB or 4TB local disks. All web pages 

are distributed to those machines via URL hashing.  

5.2 Experimental Results 
We first compare in Table 5-1 the least number of documents (in 

percentage of the list size) to be evaluated (i.e., we assume that we 

magically know where the top-k documents are in the inverted 

lists) on the GOV data set using our new index architecture where 

the normal indexes are organized as STD, HL or STR indexes.  

Since the locations of all top-k documents are magically known, 

the query processing can be immediately terminated once all of 

the top-k documents have been scanned. Therefore, the results 

show the potential that the best early termination techniques can 

achieve under our architecture with different term distances (i.e., 

the value of   in Subsection 4.2) and various normal index 

structures.  

Table 5-1. Average percentage (%) of evaluated documents 

using the magic early termination for the GOV data set  

Index 

Structure 

W/O Term 

Pair Indexes  

W/ Term Pair Indexes 

m= 1 m= 2 m = 3 

STD 47.46 4.26 1.17 1.0 

HL 38.06 3.00 1.20 0.99 

STR 12.48 1.74 1.41 1.36 

 

From Table 5-1, we can see that our methods with the term pair 

indexes can significantly reduce the number of documents 

required to be evaluated by other early termination methods 

without them, for all of the three kinds of normal indexes. This 

implies that using term pair indexes can potentially achieve much 

faster early termination and thus much more efficient query 

processing. For example, for the STD indexes, our methods with 



term distance m=3 only need to evaluate 1% of all documents in 

the lists, while those methods without term pair indexes need to 

process half of the entire lists.  

More interestingly, in our methods, using a larger term distance 

(for the term pair indexes), e.g., m=3, can result in much less 

number of evaluations than using a smaller distance, e.g. m=1. 

The reason is that (as discussed in Section 4) once the term pair 

indexes are fully processed, the upper bound of the TP scores for 

all unseen documents to be evaluated in the normal indexes can be 

reduced much more in the former case than in the latter case. This 

observation motives us to exploit the term pairs with larger 

distances to improve the query performance (as long as the extra 

index size is acceptable). Based on the above observation, we 

expect to achieve similar query performance in the following 

experiments using our real early termination techniques, where 

query processing cannot be stopped until either the early 

termination condition (discussed in Subsection 2.2) is satisfied, or 

the entire lists have been completely processed.   

Table 5-2. Query processing time (ms/query) on the TREC 

GOV data set  

Index 

Structure 

W/O Term 

Pair Indexes  

W/ Term Pair Indexes 

m= 1 m= 2 m = 3 

STD 158 132 62 56 

HL 132 61 46 34 

STR 50 32 30 32 

 

In Table 5-2, we compare the query processing time (ms/query) 

for our methods with term pair indexes and those methods without 

them on the GOV data set, where all methods use the real early 

termination. From Table 5-2, we can achieve the following 

observations: First, as expected, our methods can achieve much 

faster document retrieval than the methods without the term pair 

indexes and our methods using the term distance m=3 can result 

in the best performance with only 32 ms / query on the STR 

normal indexes. Second, as we have shown in the results for the 

magic early termination, using the farther term distance (m=3) can 

achieve faster query processing than using the distance of m=2 

than that of m=1.  

More interestingly, our methods can greatly narrow the 

performance gap between different normal index structures. For 

example, the difference of the retrieval speed among the methods 

using the STD, HL and STR normal indexes are largely reduced 

by using our method with the term distance m=3. This observation 

shows that our method may in general be used as a flexible and 

helpful component for the search engines to improve the query 

efficiency without worrying much about how the normal indexes 

are organized themselves. 

Another interesting observation for Table 5-2 is: although using 

the term distance m=3 can result in significant improvement over 

using m=1, it can only achieve slightly better performance than 

using m=2. This implies that it might not be much beneficial to 

build the term pair indexes with a very large term distance since in 

that case the gain of the faster processing speed may be 

outweighed by the overhead of the extra index size (the tradeoff 

will be discussed in more details soon). We perform similar 

experiments on the TREC GOV2 and ClueWeb09 data sets, and 

similar results can be achieved and are not displayed due to the 

space limitation.  

Table 5-3. The number of evaluated documents during query 

processing on the GOV data set 

Document 

Numbers 

W/O Term 

Pair Indexes  

W/ Term Pair Indexes 

m = 1 m = 2 m = 3 

     
STD 4,452,906 3,653,919 1,555,227 1,306,699 

HL 3,217,435 1,128,684 583,827 211,216 

STR 770,742 477,671 459,844 461,674 

     

STD 0 109,902 114,919 123,185 

HL 0 109,902 114,919 123,185 

STR 0 109,902 114,919 123,185 

    

STD 5,281 3,890 3,917 4,008 

HL 4,971 3,865 3,956 3,630 

STR 3,242 400 137 93 

 

In Table 5-3, we show the total number of documents (    )   
(associated with the 51 two-term queries in the trec2004mixed 

query set) that are evaluated on the GOV data set during query 

processing, for all methods compared in the previous tables. We 

also show the number of the documents (    ) that are evaluated 

in the auxiliary term pair lists and the number of documents (   ) 

whose TP scores are fully evaluated. From Table 5-5, we can see 

that although our methods need to first process the additional term 

pair indexes, we evaluate much less number of documents in the 

normal indexes than the methods without the term pair indexes, 

which is the main reason that we can achieve faster query 

processing speed than them. Interestingly, we can also see that 

although using the larger term distance may lead to evaluating 

more documents in the term pair indexes than using the smaller 

distance, the total number of documents evaluated by them is 

much smaller. Therefore, our method using the larger term 

distance can achieve the faster speed of query processing than that 

using the smaller term distance. In addition, we observe from 

Table 5-3 that using our term pair indexes can also help to save 

the number of full evaluations on TP scores (i.e., the value of    ) 

due to the reasons discussed in Section 4. The similar 

experimental results can also be achieved from the ClueWeb09 

data sets and are not shown here due to the space limitation.  

We now show the experimental results for the impacts on the 

query efficiency of using various parameter values in our ranking 

functions. Recall that in the basic form of our ranking function 

(formula (2.1)), there are three parameters  ,   , and  , specifying 

the weights of the SR, IR and TP scores respectively. The higher 

weight for a certain kind of score implies the kind of scores may 

have a greater impact on the overall document score than other 

kinds of scores. We note that the SR score is independent of the 

terms, while both the IR and TP scores depend on the terms and 

are often correlated with each other (we also find such correlation 

between them through our experiments). Therefore, we slightly 

changed the formula (2.1) such that      , where k is 

parameter achieved from our experiments and still       
 . We are going to show the experimental results in terms of 

either various values of   or various values of the rate   /  . First, 

we compare in Table 5-4 the query processing time (ms/query) on 

the ClueWeb09 data set (with the STR indexes), using our 

methods and the methods without the term pair indexes (w/o TPI), 

in terms of different values of     and a fixed value of      . 

From Table 5-4, we can achieve the following observations: First, 

our methods with term pair indexes can consistently achieve much 

faster query processing than the methods without them for various 

values for the weights of TP scores (we can also achieve such an 

observation in Table 5-5 that will be explained soon). Second, our 



methods using a larger distance can achieve better performance 

with the increasing of the weights of TP scores. Similar 

observations can also be achieved from the experimental results 

on the GOV data set and are not shown here due to space 

limitation. 

Table 5-4. Query processing time on ClueWeb09 (STR 

indexes), for the various values of      and a fixed       

    
W/O Term 

Pair Indexes  

W/ Term Pair Indexes 

m= 1 m= 2 m = 3 

0 145 137. 129 125 

0.25 147 118 109 106 

0.5 147 116 105 101 

1 147 109 100 92 

2 144 100 87 85 

4 141 94 85 80 

 

Table 5-5 . Query processing time on the ClueWeb09 data set 

(STR indexes), for the various values of           

         
W/O Term 

Pair Indexes  

W/ Term Pair Indexes 

m= 1 m= 2 m = 3 

0.25 154 100 90 85 

0.5 155 108 98 91 

1 147 109 100 92 

2 148 112 102 98 

4 144 110 105 99 

 

We also compare in Table 5-5 the query processing time on the 

ClueWeb09 data set (with the STR indexes) in terms of different 

rates of the weight for the TAU (title, anchor and URL) fields and 

that for the body field (i.e.        ). From Table 5-5, we can 

see that when the TAU fields dominate the overall scores, we can 

achieve faster early termination since the indexes for the TAU 

fields are always evaluated earlier than those for the body field.  

Table 5-6. The index size of the term pair indexes that are 

only associated with the trec2009mq query set on the 

ClueWeb09 data set, and the total Index size per machine  

Index Type 
Index-size for 

trec2009mq 

Total Index-size Per 

machine 

m=1 m<=2 m<=3 m=1 m<=2 m<=3 

Normal Indexes 

(STD, HL, or STR) 
18 GB 60 GB 

Term-

Pair 

Index 

W/O 

Optimization 

2.27 
GB 

3.25 
GB 

3.93 
GB 

>0.5 
TB 

>1.0 
TB 

>1.5 
TB 

With 

Optimization 

410 

MB 

503 

MB 

573 

MB 

41.8 

GB 

75.1 

GB 

104 

GB 

 

Finally, we compare the index size of normal indexes and our 

term pair indexes for the ClueWeb09 data set in Table 5-6. We 

first show in the middle column the index size only for the queries 

in the trec2009mq query set. This is a rough measure of the 

amount of additional data per query that has to be transferred from 

the disk to the memory [32] when employing term-pair indexes. 

We then show the index size per machine for the whole 

ClueWeb09 data set. We show the index size for the term pair 

indexes with and without the optimization (the index reduction 

techniques) discussed in Subsection 4.4. From the table, we can 

see that, the size of the term pair indexes is greatly reduced using 

our methods. We note that the index sizes in both the above tables 

can be further reduced by applying better compression methods 

[32,33]. In addition, if we also take into consideration of the 

caching techniques, large proportion of disk traffic can be avoided 

and therefore the overall good query efficiency can still be 

achieved. 

6. CONCLUSION AND FUTURE WORK 
In this paper, we have studied early termination techniques for the 

proximity-aware retrieval models on large-scale data sets. We 

proposed a new index which essentially offers the current search 

engines an additional component (term pair indexes) that can 

improve the query efficiency greatly without changing the original 

inverted indexes. Our experimental results show that our methods 

can significantly improve query efficiency especially for the 

proximity-aware retrieval models. 

There are still several interesting open problems. First, besides the 

simple method we mentioned in Subsection 4.3 to deal with 

multiple-term queries, we are currently studying other methods 

for such queries. There are two intuitive methods that might be 

used to extend our methods for the multiple-term queries: one is 

to directly build the additional multiple-term indexes instead of 

the pair indexes, while the other is to first decompose the 

multiple-term query into a set of two-term queries and then 

combine the results of those two-term queries.  However, there are 

lots of details to be taken care of for them. For example, the 

former method may increase the extra index size greatly while the 

second method may not be directly suitable to a proximity-aware 

retrieval system unless we allow random lookups within the 

resulting lists of all two-term queries. In addition, it is interesting 

to study how to integrate the more optimal index compression 

methods to decrease the index sizes, e.g., PForDelta [33] which 

has been shown to be efficient in both compression size and 

decompression speed. It will also be interesting to see if we 

should reorganize the extended indexes themselves such that the 

early termination inside them is. Finally, we want to study the 

impacts on our methods of other factors, such as query features, 

caching policies and user feedbacks. 
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