
Efficient Term Proximity Search with Term-Pair Indexes
Hao Yan1*, Shuming Shi2, Fan Zhang3*, Torsten Suel1, Ji-Rong Wen2

1
 Polytechnic Institute of New York University

2
 Microsoft Research Asia

3
 Nankai University, China

hyan@cis.poly.edu, {shumings, jrwen}@microsoft.com, v-fazhan@microsoft.com, suel@poly.edu

ABSTRACT

There has been a large amount of research on early termination

techniques in the area of web search and information retrieval.

Such techniques return the top-k documents without scanning and

evaluating the full inverted lists of the query terms. Thus, they can

greatly improve the efficiency of query processing. However,

most existing research on early termination does not consider the

impact of term proximity, i.e., the distance between term

occurrences in a document, which has recently been integrated

into a number of retrieval models to improve effectiveness. Only a

limited amount of work has focused on how to improve query

processing efficiency in this case.

In this paper, we propose new early termination techniques for

efficient query processing for the case where term proximity is

integrated into the retrieval model. We propose new index

structures based on a term-pair index, and study new document

retrieval strategies on the resulting indexes. We perform a detailed

experimental evaluation on our new techniques and compare them

with the existing approaches. Our experimental results on large-

scale data sets show that our techniques can significantly improve

the efficiency of query processing.

Categories and Subject Descriptors

H.3.3 [Information Search and Retrieval]: Search process;

H.3.4 [Systems and Software]: Performance evaluation

(efficiency and effectiveness)

General Terms

Algorithms, Performance, Experimentation

Keywords

Top-k, Term proximity, document structure, term-pair index

1. INTRODUCTION
A lot of research in web search and information retrieval has

studied how to improve the efficiency of document retrieval,

using techniques such as massive parallelism, caching, inverted

index compression and early termination. We focus on one

important class of optimizations, early termination techniques

(also called dynamic index pruning techniques), which are widely

used in IR systems and large search engines [31].

To better understand early termination techniques, we first look at

the most basic index structure, the inverted index [31, 37]. An

inverted index consists of many inverted lists, each of which is a

sequence of postings. Each posting contains a document ID

(docID), plus additional information such as the term frequency in

the document, the exact positions of the occurrences, and their

context (e.g., in the title, in anchor text, or in URLs). Typically the

postings in each inverted list are sorted by their docIDs to achieve

good index compression [31]. To process a query, a search engine

could traverse the complete inverted lists for all relevant terms,

calculate relevance scores for all documents in these lists, and

finally return the top-k (e.g., k = 10) documents having the highest

scores. However, such exhaustive evaluation requires significant

computing resources and may greatly increase query response

time.

To overcome this problem, many early termination techniques

have been proposed [1, 2, 5, 10, 13, 17, 21, 24, 30, 31, 34, 35, 36].

The common goal of these is to speed up query processing by

avoiding the processing of all documents in the relevant lists, and

instead evaluating only a small subset. This is usually done by

employing alternative index organizations such that during a

traversal of these structures, the most promising documents (those

likely to have the highest scores) are evaluated first while other

documents may be evaluated later only as needed. Once a certain

amount of documents has been processed, it is often possible to

terminate the query evaluation and return the top-k results,

without even considering the less promising documents.

The features being used to evaluate the documents (i.e., calculate

the document scores) play a crucial role in the efficiency of early

termination techniques, since they determine the best organization

and ordering of the index, and thus the point at which early

termination can occur. Most existing research on early termination

techniques treats a document as a bag of words and evaluates

queries using the following two kinds of features: (a) term-

dependent features, e.g., within-document frequencies [21], or

term-based IR scores or impacts [2]; and (b) term-independent

features, e.g., Pagerank or other static ranks or scores [4, 17, 34]

that measure the overall quality, importance, or popularity of a

document (based on analysis of links, content, query logs, or

traffic data in a preprocessing step). We note that while term-

dependent scores are query-related, they are here only based on

each separate term instead of the whole query, and thus do not

depend on the relative positions or distances between terms within

a document.

* This work was done when Hao Yan and Fan Zhang were interns at Microsoft

Research Asia.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

CIKM’10, October 26–29, 2010, Toronto, Ontario, Canada.

Copyright 2010 ACM 978-1-4503-0099-5/10/10...$10.00.

However, overall scores may also depend on the distance between

the query terms in the document, called term proximity (TP), such

that terms occurring close to each other often result in a higher

score. In fact, the real search engine [4] has integrated the term

proximity into their ranking system (although the details are not

provided in [4]). In addition, a lot of recent research [7, 8, 15, 26,

28] has shown that retrieval effectiveness can be greatly improved

by integrating term proximity scores into the retrieval model.

Unfortunately, there is much less research on how to improve

query efficiency for such proximity-aware retrieval systems, with

the exception of [24, 35, 36]. In the following, we will refer to

early termination (ET) techniques that consider term proximity

(TP) as TP-ET methods, and refer to those without TP as NTP-ET

methods. We note that while real search engines often integrate

into their overall scoring function a variety of other features

beyond static ranks, term-based IR scores, and query-based term

proximity scores, in this paper we only focus on these three kinds

of scores, which we call SR, IR, and TP scores, respectively.

Thus, the study of TP-ET techniques is interesting and important

due to the importance of term proximity factors in state-of-the-art

ranking functions. However, the index structures and retrieval

strategies of existing NTP-ET techniques can not be directly

applied to TP-ET methods. The main reason is that each inverted

list is only associated with one particular term and does not

consider any other terms, while the TP score is based on the entire

query and therefore depends on the interaction between several

query terms. Independently ordering each relevant inverted list of

a given query in some order, say by term scores, may result in a

fairly non-monotonic and almost random distribution of the TP

scores that makes early termination impossible for most queries.

Thus, the main challenge for TP-ET methods is how to consider

the impacts of all three kinds of scores to achieve effective early

termination and thus efficient query processing.

In this paper, we study new early termination techniques that

improve retrieval efficiency for the case where term proximity

information is taken into account in the retrieval model. Our goal

is to create a new auxiliary index structure and mechanism that

can be used in IR systems to speed up query processing without

reorganizing their entire structure. In particular, we create an

additional term-pair index for cases where certain pairs of terms

occur close to each other in a document and propose new retrieval

strategies for the resulting indexes. The new index organization

implicitly moves documents with high term proximity scores

towards the front of the query processing pipeline, without

disturbing the normal indexes too much. Thus, the documents

with the highest overall scores are likely to be evaluated first

during query processing, resulting in effective early termination.

Our experimental results show that our methods can achieve

significant improvements in efficiency over existing methods.

2. BACKGROUND AND RELATED WORK
We refer to [31, 37] for basic background on indexing and query

processing in search engines.

2.1 The Ranking Functions
As mentioned in Section 1, we focus on the following three types

of scores: SR, IR and TP scores. Almost none of the existing

research on early termination techniques has studied other

additional types of scores beyond these, though real search

engines may do so. In fact, most ET techniques are based on only

one or two of these. For example, [2, 21] uses only the IR score

while [4, 17, 34] considers both SR and IR scores and [24] studies

both IR and TP scores. There are only a few ET techniques [35,

36] that have integrated all three scores into their ranking

functions. The overall document score for a particular ET method

is often evaluated as a linear weighted sum of all types of scores

considered by it, and the general ranking function for most of the

ET techniques is as follows:

 () () () () (2.1)

where S(d, q) is the overall score of the document d with respect

to the query q, SR(d) is the SR score of the d, IR(d, q) and

 () are respectively the IR and TP scores of the document d

with regard to the query q, while , , and are three non-

negative parameters (). Usually all of the SR, IR

and TP scores are normalized into the range [0, 1]. Formula (2.1)

can be adapted in various ways by tuning , , and . For

example, ranking functions for methods that only use SR and IR

scores can be modeled by setting .

There has been a lot of research on the calculation of each of the

three types of scores. The SR score could be computed using the

Pagerank method in [4] but could also incorporate various other

measures of document quality or importance. One popular way to

calculate the IR score is the BM25 formula in [23], which has

been widely used in IR systems. However, the calculation of TP

scores is often more complicated. It does not depend only on a

particular term but on the entire query. Many approaches [7, 8, 15,

26, 28, 22, 24, 35, 36] have been proposed to calculate TP scores.

Most methods assume the TP score of a pair of occurrences to be

inversely proportional to the square of their distance within the

document, but the concrete implementations are different from

each other and the ways to combine such pair TP scores into the

document TP score are also different. However, a popular way is

to first slide a window with a certain size w over the document,

and then each time calculate the TP score for a term pair

< based on only the contributions from the occurrences of

 and within that window. Then all such pair scores are

combined using a weighted sum, to obtain the final document TP

score.

The ranking functions of practical search engines also take into

consideration the document structure and the context of term

occurrences, e.g., whether they are in the title, or in the URL, for

better result quality [4]. Like [4, 35], we distinguish the following

four different contexts (we call them fields) of a web document:

title, URL, anchor (text), and body fields, where the anchor text

refers to the visible, clickable text (in other pages) in a hyperlink

pointing to the page, while the body field refers to the rest of the

web page (anything not in the other three fields).

2.2 Early Termination without TP
Ideally, an early termination technique stops evaluating

documents immediately once the top-k documents have been

discovered. In practice, we cannot immediately tell if a document

we just encountered will be in the final top-k, and thus we have to

continue evaluating new documents until we are sure that no new

document can achieve a higher score than any document in the

current top-k list. In addition, we often require that the k

documents in the result list (achieved by the early termination

techniques) are returned in the same order as without early

termination.

We note that although many early termination methods may relax

the above restriction allowing for approximate top-k results [5, 10,

17, 32] (e.g., the result list contains 99% of the real top-k

documents on average) as long as a certain retrieval precision can

be reached, we only focus on exact top-k query processing, that is,

all top-k results must be returned and in the correct order.

Index Reorganization: Most early termination techniques

reorganize the inverted lists in some way that is ordered by certain

types of scores, such that the most promising documents are

skewed towards the beginning of the lists, and thus evaluated

earlier than other documents. In particular, the method in [21]

does so based on the within-document frequencies (which are

assumed to dominate the IR scores). The method in [4] stores the

postings (hits) of a list into two sets of inverted barrels: one set for

the hit lists that include title or anchor hits and another set for all

hit lists. The method in [2] partitions an inverted list into m

segments in each of which all documents are of the same impact

values (which are essentially quantized IR scores) and sorted by

docIDs. The segments themselves are sorted in descending order

of their impacts. The approach in [17] partitions the documents in

a list into two segments based on their IR scores, and the segment

with the higher scores is evaluated first. All documents within

each segment are sorted in descending order of their SR scores. In

this way, the documents with the highest IR and SR scores are

located either in the top segment or the beginning of the bottom

segment. The very recent research in [34] sorts a list by a

combination of the so-called UBIR score and the Pagerank (or

static rank), which are both term-independent information.

Retrieval Strategies: Many evaluation strategies [2, 5, 14, 17, 19,

30, 32, 34, 35, 36, 37] have been proposed in the IR and web

search areas, and they can be roughly divided into the following

three categories: document-at-a-time (DAAT) [5, 14, 17, 30, 32,

35, 36, 37], term-at-a-time (TAAT) [19, 30, 37] and score-at-a-

time (SAAT) [2]. DAAT evaluates a document by considering the

contributions of all query terms, before it deals with the next

document; TAAT evaluates all documents in the inverted list of

one term before it does so for the next term; SAAT is only

suitable for indexes sorted by impacts [2]. While TAAT is widely

used in the traditional IR systems and SAAT can achieve good

performance in certain cases [37], DAAT has been shown to be

able to achieve very good query performance in many cases

especially with certain optimizations [5, 14, 17, 30, 32, 35, 36,

37]. DAAT often requires a smaller run-time memory size while

the other two methods need more memory to maintain

intermediate scores during query processing. Please refer to [2, 5,

37] for a detailed comparison among those strategies.

We note that many retrieval algorithms have also been proposed

in the database area, besides the IR and web search areas, e.g.,

Fagin's Algorithm (FA) [11], the imporved Threshold Algorithm

(TA), and the No Random-access Algorithm (NRA) [12]. The

main difference between TA and NRA is that the former allows

random access on the inverted list, while the latter only allows

sequential access (Please refer to [13] for a survey of these

methods).

2.3 Early Termination with TP
There are only a few early termination approaches [24, 35, 36]

(and [4] although the concept of early termination was not

explicitly presented in it) that integrate the TP information into

their retrieval models. They adopt different strategies to overcome

the above problem, where the methods in [4, 35] exploit the

document structure to reduce the upper bound of the unseen

scores, while [24, 36] implicitly move the documents with high

TP scores to the front of the list by creating new term pair

indexes. In particular, the method in [4] groups the documents of

a list into two sets where one set is actually a subset of the other

one and contain only those hit lists that include title or anchor hits.

That is, they assume that the occurrences in the title or anchor

fields imply high IR scores and therefore should be evaluated

first. The method in [35] also exploits the document structure

information to organize the indexes. It partitions each list into the

following two segments: one top segment containing the postings

only for the occurrences within the three fields of title, anchor

text, and URL, and another bottom segment containing the

postings only for those within the body field. During query

processing, it first processes the entire top segment, and then

attempts to achieve early termination in the second segment,

based on the fact that parts of the TP scores (associated with the

title, anchor and URL fields) have been calculated in the top

segment and thus the upper bounds of the TP scores for all unseen

documents in the second segment can be reduced.

In contrast, [24] and [36] approach the problem from another

angle: They create additional indexes for pairs of terms in the

document and exploit those indexes to implicitly move documents

with higher TP scores to the front of the lists. In particular, [24]

creates additional indexes for all possible term pairs, i.e., pairs

with any possible distances between each other within the same

document, while [36] only creates such indexes for the phrases.

However, [24] sorts indexes only by TP scores, and does not

consider the impact on index organization due to SR and IR

scores (although its CL method evaluates the document by both

IR and TP scores). In addition, the size of its additional pair

indexes is huge as it builds indexes for all combinations of terms

of a document (while [24] mentions a static pruning method to

reduce this index size, the details of the method are not provided).

Moreover, [24] does not consider the SR score and is thus not

applicable to cases such as the web where overall document

quality and importance is often as important as term-based scores.

Finally, it is interesting that [36] has shown that we can improve

efficiency greatly by creating additional extended hit-list only for

some selected phrases in the document, without exploding the

index size. However, [36] does not study the potential benefits of

using term pairs with larger distances, which may improve the

query efficiency a lot more although it may complicate both index

construction and document retrieval (the details will be discussed

in later sections). Moreover, neither of [24] and [36] consider the

document structure, which as discussed above has been used in

the real search engines [4]. In addition, both of them have to do

full evaluation of documents that is desirable to be avoided.

2.4 Other Related Work
Compared to the above dynamic pruning techniques, static

pruning techniques (e.g., [6, 20]) try to predict and discard certain

less important parts of the index structures as the indexes are

being built. Such methods achieve high retrieval efficiency by

sacrificing on search quality for some queries. The method in [3]

creates the auxiliary indexes for firstword-nextword pairs to speed

up the phrase query. However, it is not directly suitable to the

non-phrase query. The pre-aggregation techniques [16] first pre-

aggregate the intersections of the lists and then simultaneously

process the intersection list and the term lists to speed up the

retrieval. Interestingly, [18] also uses the intersection lists as an

intermediate level of a three-level caching structure to speed up

query processing. However, the intersection lists in [16, 18] do

not contain the position information of terms. Some other early

termination techniques [5, 32] focus on reducing the number of

full evaluations. Their main idea is to first evaluate all documents

using approximate scores and then perform the full evaluation

only on the documents with the highest approximate scores.

However, we often calculate all of the SR, IR and TP scores

unless we can safely avoid doing so without loss of accuracy.

Finally, early termination strategies are also affected by caching

policies [18, 25, 29]. In this paper, we only focus on dynamic

pruning techniques to get the exact top-k query results and do not

consider pre-aggregation and caching policies.

3. CONTRIBUTIONS OF THIS PAPER
In this paper, we study and evaluate efficient document retrieval

techniques for the case where term proximity information is

integrated into the retrieval models. Our goal is to provide the

search engine with a separate component to speed up the query

processing greatly while not incurring much overhead of storing

the extra indexes. Our main contributions are as follows:

(1) We propose new index structures by creating additional term

pair indexes for pairs of terms that are within certain distances

to each other in the documents, and study corresponding

retrieval strategies for the resulting indexes. We also proposed

new methods to reduce the index size of the term pair indexes.

(2) We integrate the impacts of document structure information,

i.e., the context of term occurrences, into our retrieval models.

Although most of the existing research on early termination

techniques does not consider such information, the real search

engine [4] does so. In particular, we take into consideration

the following four fields of the document structure: title,

anchor, URL and body fields.

(3) We propose the new methods to avoid full evaluations on the

TP scores by using our term pair indexes. Thus our methods

can not only reduce the number of documents to be evaluated

during query processing, but also save the computation cost

by avoiding unnecessary full evaluations.

(4) We compare our algorithms with other existing techniques on

large scale data sets. Our experimental results show that our

approach can consistently improve the query efficiency

significantly while also achieving a reasonable tradeoff

between query efficiency and index size.

4. OUR ALGORITHMS
Our goal is to improve the query efficiency especially on the

proximity-aware retrieval models by creating for the search

engines an auxiliary index component (term pair indexes) which

can be easily plugged in the existing systems. Therefore, our new

index architecture is composed of the normal indexes, which may

be organized by any methods discussed in Section 2, and the term

pair indexes. We note that the new pair indexes do not change the

index organization of the normal inverted indexes.

The main idea of our algorithms is: we exploit the additional term

pair indexes to implicitly move the documents with the highest TP

scores on top of other documents in the normal indexes. Recall

that the normal indexes are not affected by the pair indexes and

often have been organized by other early termination techniques

discussed in Section 2, such that the documents with the highest

SR or IR scores are located to the beginning of the normal

indexes. Therefore, under our new architecture, the most

promising documents (with the highest integrated scores of SR, IR

and TP scores) are organized as the first tier of documents to be

evaluated and thus the early termination can be expected.

A query under the new architecture is then processed as follows:

when the engines receive a query, they first load and process the

relevant lists from the pair indexes (as long as they contain such

relevant lists); they then load the normal inverted indexes and

continue to evaluate the documents of these lists until the top-k

results can be safely returned without scanning the entire lists.

4.1 The Ranking Function
Our ranking function is based on the formula (2.1) discussed in

Section 2. However, we also integrate into it the document

structure information for the following four fields of a web page:

title (T), URL (U), anchor (A) and body fields (B). In particular,

we represent the IR score (or the TP score) as the weighted sum of

its partial scores in all of the four fields (we note that unlike IR

and TP scores, the SR score is not affected by the document

structure). Therefore, our ranking function can be described as

follows:

 () () ∑ (())

 ()

 ∑ (())

 ()

(4.1)

where is the weight for the th field, the () and the

 () are respectively the partial IR and TP scores of the

query in the th field, while other symbols are of the same

meanings as those in the formula (2.1).

We now discuss how to calculate various scores. The SR scores

can be achieved in the exact same way as in [35, 36]. The IR

partial scores can be calculated by the BM25 formula [23] except

that they are computed based on the term occurrences in a

particular field instead of those in the entire document. The basic

process of calculating the document TP score has been discussed

in Section 2 and is based on all pair-wise occurrences of query

terms within a fixed-size window. The scoring function for a

particular pair-wise occurrence can be derived from the scoring

models in [35, 36, 24, 7, 8] and one of their common features is

that such a score is inversely proportional to the square of the

distance between terms as follows:

 () (

 ()
) (4.2)

where () is the TP score for one particular pair-wise

occurrence of the terms and , while () is a linear function of

the square of the distance () of the two terms. The value

of () is also affected by the ordering of the occurrences in

the document and that in the query. For example, given a query

“New York”, we will assign a higher () score to the

occurrence of “New York” than that of “York New”. This can be

achieved by representing the () as followings

 () |(

) (

)| (4.3)

where
 and

 are the positions of and in the document

while

and

are their positions in the query.

4.2 Building New Indexes
In this subsection, we first describe how we build the term pair

indexes and then discuss how they are combined with various

index structures of the normal indexes.

Building term pair indexes: Given all of the relevant documents

to a query, our goal is to create additional indexes for a small

subset of them that contain the close-by term pairs and thus

potentially have the highest TP scores. In particular, given a term

pair () (which is different from another pair ()), we first

identify the documents which contain at least one pair-wise

occurrence of them with () , where () is

derived from the above formula (2.4) and is a certain distance

value, say . The possible forms of such occurrences are:

 () , () , () , and

 (), where , , can be any other terms in

the document but and . We then build an inverted list (we call

it term pair list) for the pair () based only on the above

identified documents. The basic form of such a term pair list with

n postings is shown in Figure 4-2.

Figure 4-2 The basic form for a term pair list of n postings

The term pair list is then a sequence of postings, each of which

contains a docID, the term pair frequency , and all of the

occurrences. Unlike the posting in the standard inverted list

discussed in Section 1, which always records the occurrences of a

single term in a document, the posting in the term pair list does so

for either one or both of terms in the query, according to the

distances between them. In particular, we treat two consecutive

occurrences of them with () as a single occurrence

of the pair, while we encode those with larger distances as two

separate occurrences. Thus each occurrence can be represented as

a code of (T, P), where T stands for one of the following types of

the occurrences: (1) and appear together (and in the order of

() rather than ()) with () and , (2)

 appears by itself (i.e., its to the closest following is

greater than), (3) appears by itself (i.e., its to the closest

previous is greater than); while P stands for the position of

the first term in case (1), or the position of the term in the other

two cases. Thus the value of is the number of all of such

occurrences. Please note that we build only a single list for the

pair (), while we treat () and () as different pairs

and will create separate term pair lists for them.

From the above we can see that on one hand, we never maintain

any information in the term pair list for the documents that

contain no pairs of () with () , while on the

other hand, once a document contains such a close-by pair, the

information for all occurrences of both terms within will be

encoded into the list. The reason we keep all such information is

to provide the flexibility for the search engines to employ various

ranking functions and evaluation strategies on the term pair

indexes. Once the engines fix such settings, a non-trivial amount

of redundant information in the term pair indexes can be safely

removed without downgrading the query performance much

(details will be discussed soon).

Cooperation with normal indexes: Before being combined with

the above term pair indexes, the normal inverted indexes often

have been reorganized by a variety of other early termination

methods discussed in Section 2 (especially in Subsection 2.2). In

this paper, we mainly focus on the following three kinds of index

organizations of the normal inverted indexes: (1) the standard

inverted indexes structure [31] (which we call STD indexes)

where postings are sorted by docIDs or SR scores (as discussed in

Section 2, the latter ordering can be easily transformed into the

former one with docID reassignment in the order of the SR

scores); (2) the index structure in [17] (which we call HL indexes)

where both SR and IR scores are considered, resulting in the two

segments with high and low IR scores respectively, in each of

which all postings are sorted by SR scores; (3) the index structure

in [35] (which we call structured or STR indexes) where all of SR,

IR and TP scores are considered and the indexes are also divided

into two segments (the TAU segment and the B segment) but

according to whether the occurrence happens in the TAU (title,

anchor and URL) fields or in the B (body) field. We note that

although there are some other index structures (e.g., sorting

postings only by the TP scores [24]) that may have been used for

the normal inverted indexes, the above three ones, i.e., STD, HL,

and STR, can to some extent represent most of the index

organizations used in the state-of-the-art early termination

techniques with or without consideration of the TP information.

For example, as discussed in Section 2, the HL structure can be

easily converted to a special case of the structure in [2], while

both STD and HL are considered for the methods in [36].

4.3 Retrieval Strategies
In this subsection, we discuss the retrieval process for our new

index architecture (using the two-term query as an example),

where the normal indexes are organized in either one of STD, HL

and STR index structures.

Given a query of (), our retrieval process is divided into

the following two phases:

(1) In the first phase, we check the term pair indexes to see if

they contain the list for () . If they do not do so, we

skip the rest part of this phase and go directly to the second

phrase; otherwise we load into the memory. We then

load the list if it also exists in the term pair indexes.

After that, we process the entire and evaluating

appropriate documents in them, resulting in a temporary top-

 list in which all documents are of their complete scores and

do not need to be evaluated again in the second phase.

(2) In the second phase, we load the normal indexes and

continue to evaluate new documents in them (skipping the

documents that have been evaluated in the first phase) in a

DAAT manner until the early termination can be achieved.

From the above, we can see that all documents with the high TP

scores have been completely evaluated in the first phase and put

in the temporary top-k list. As a result, the upper bound of the TP

scores for all documents in the second phrase is greatly reduced

since none of them contain close-by pairs. Thus as long as the

index structure of the normal indexes (in the second phase) has

the property that the documents with the high SR and IR scores

*
 *(

) (

) (

)+

 *(

) (

) (

)+

 ….,

 *(

) (

) (

)+ }

are also located at the beginning of the lists, the quick early

termination in the second phase can be expected in such cases

since the early termination condition discussed in Subsection 2.2

can be quickly satisfied after a small amount of documents have

been evaluated.

Interestingly, the term pair indexes can not only be used to reduce

the number of documents to be evaluated (since only a small

proportion of the lists need to processed before early termination),

but also be exploited to save the number of full evaluations on TP

scores as follows: when a new document is encountered, we often

have known its exact SR and IR scores (that can often be pre-

computed since their values do not depend on other terms in the

query) and the upper bound of its TP score, therefore we can

easily get the upper bound of its overall document score, which

can then be compared with the score of the kth document in the

current top-k list. Once we find its overall score is smaller than

that of the kth document, we can safely discard it and thus avoid

the expensive full evaluation of its TP score.

For the queries with more terms, we present a very simple method

by taking advantage of the nonexistence of term pair lists as

follows: if there are no existing term-pair lists for any pair of the

query () (and this is not due to the term-based

pruning of the lists), we then know that there are no documents

with very high TP scores and therefore the upper bound of the TP

score for all unseen documents can be reduced and thus the early

termination may be achieved.

4.4 Index Size Reduction
The term pair indexes can be pruned in either a term-based

manner and in a posting-based manner. First, we do not need to

build the pair lists for all term pairs based on the rareness of the

terms and the pairs. For example, if the normal inverted lists for

both terms are very short (which means both of them are rare

terms), we do not need to build the pair list for them since it will

not take much time to process even the whole normal lists of

them. In contrast, it is always desirable to build the pair list for a

rare pair that is composed of two common terms since the pair list

will then be much shorter than either of the term lists.

Alternatively, another interesting way to reduce the size for the

term pair indexes is to prune the number of postings stored in each

term pair list, without affecting the precision of the top-k results.

As discussed above, if the ranking functions (and its parameters)

of the retrieval models are fixed, we do not need to store a lot of

information in the current term pair lists, while we can still

achieve the same results in the first phase of our current retrieval

models. This can be achieved by the following: we pre-compute

the top-k list for all documents of the term pair lists (those

processed in the first phase) during the index construction period

and thus we only need to store the resulting top-k list for those

documents in the term pair list, along with a hash table specifying

which documents in the lists have been processed and thus will

not be reevaluated in the second phase. In our experiments, this

idea is slightly modified since we want to keep the ranking

functions as flexible as possible. In particular, for each posting in

a term pair list, we only keep the position information for close-by

pairs while we discard the position information of the independent

occurrences of the single terms (we do this only for the body field

and still keep all position information in the other three fields

since the body field dominates the size). Our later experiments

will show that the index size can be greatly reduced by using the

above various optimizations.

In addition, on one hand, we can reduce the size of the resulting

pair indexes even further using a better compression approach

(e.g., PForDelta in [33]) to compress docIDs and frequencies;

while on the other hand, we can also improve the compression

performance for positions, based on the observation [32] that the

clustering property existing in the single-term occurrences can

lead to better compression for positions. In fact, we may expect to

achieve even better compression ratio since the correlation

between consecutive pairs may be stronger than that between

successive single terms.

5. EXPERIMENTS

5.1 Experimental Setup
For our experiments, we use the following three data sets: the

widely used TREC GOV (1.25 million web pages), TREC GOV2

(25.2 million web pages), and a newly distributed TREC

ClueWeb09 data sets [9] which consists of 1.04 billion web pages

in ten languages while only those in English, about 500 million

pages, are used in our experiments. For the evaluation on the

GOV data set, we use the trec2004mixed query set which contains

225 queries and 51 two-term queries among them; for the

ClueWeb09 data set, we use the query track (we call trec2009mq)

of TREC2009 which contains 40,000 queries and 14,620 two-term

queries among them. For the GOV data set, we use a single

machine with Dual 2.13 GHz Intel CoreTM2 CPU, 4GB RAM, and

2*500 GB local SATA disk. For the ClueWeb09 data set, we use

40 machines, where each machine has Quad 2.50 GHz Intel Xeon

CPU, 16GB RAM, and 1.5 TB or 4TB local disks. All web pages

are distributed to those machines via URL hashing.

5.2 Experimental Results
We first compare in Table 5-1 the least number of documents (in

percentage of the list size) to be evaluated (i.e., we assume that we

magically know where the top-k documents are in the inverted

lists) on the GOV data set using our new index architecture where

the normal indexes are organized as STD, HL or STR indexes.

Since the locations of all top-k documents are magically known,

the query processing can be immediately terminated once all of

the top-k documents have been scanned. Therefore, the results

show the potential that the best early termination techniques can

achieve under our architecture with different term distances (i.e.,

the value of in Subsection 4.2) and various normal index

structures.

Table 5-1. Average percentage (%) of evaluated documents

using the magic early termination for the GOV data set

Index

Structure

W/O Term

Pair Indexes

W/ Term Pair Indexes

m= 1 m= 2 m = 3

STD 47.46 4.26 1.17 1.0

HL 38.06 3.00 1.20 0.99

STR 12.48 1.74 1.41 1.36

From Table 5-1, we can see that our methods with the term pair

indexes can significantly reduce the number of documents

required to be evaluated by other early termination methods

without them, for all of the three kinds of normal indexes. This

implies that using term pair indexes can potentially achieve much

faster early termination and thus much more efficient query

processing. For example, for the STD indexes, our methods with

term distance m=3 only need to evaluate 1% of all documents in

the lists, while those methods without term pair indexes need to

process half of the entire lists.

More interestingly, in our methods, using a larger term distance

(for the term pair indexes), e.g., m=3, can result in much less

number of evaluations than using a smaller distance, e.g. m=1.

The reason is that (as discussed in Section 4) once the term pair

indexes are fully processed, the upper bound of the TP scores for

all unseen documents to be evaluated in the normal indexes can be

reduced much more in the former case than in the latter case. This

observation motives us to exploit the term pairs with larger

distances to improve the query performance (as long as the extra

index size is acceptable). Based on the above observation, we

expect to achieve similar query performance in the following

experiments using our real early termination techniques, where

query processing cannot be stopped until either the early

termination condition (discussed in Subsection 2.2) is satisfied, or

the entire lists have been completely processed.

Table 5-2. Query processing time (ms/query) on the TREC

GOV data set

Index

Structure

W/O Term

Pair Indexes

W/ Term Pair Indexes

m= 1 m= 2 m = 3

STD 158 132 62 56

HL 132 61 46 34

STR 50 32 30 32

In Table 5-2, we compare the query processing time (ms/query)

for our methods with term pair indexes and those methods without

them on the GOV data set, where all methods use the real early

termination. From Table 5-2, we can achieve the following

observations: First, as expected, our methods can achieve much

faster document retrieval than the methods without the term pair

indexes and our methods using the term distance m=3 can result

in the best performance with only 32 ms / query on the STR

normal indexes. Second, as we have shown in the results for the

magic early termination, using the farther term distance (m=3) can

achieve faster query processing than using the distance of m=2

than that of m=1.

More interestingly, our methods can greatly narrow the

performance gap between different normal index structures. For

example, the difference of the retrieval speed among the methods

using the STD, HL and STR normal indexes are largely reduced

by using our method with the term distance m=3. This observation

shows that our method may in general be used as a flexible and

helpful component for the search engines to improve the query

efficiency without worrying much about how the normal indexes

are organized themselves.

Another interesting observation for Table 5-2 is: although using

the term distance m=3 can result in significant improvement over

using m=1, it can only achieve slightly better performance than

using m=2. This implies that it might not be much beneficial to

build the term pair indexes with a very large term distance since in

that case the gain of the faster processing speed may be

outweighed by the overhead of the extra index size (the tradeoff

will be discussed in more details soon). We perform similar

experiments on the TREC GOV2 and ClueWeb09 data sets, and

similar results can be achieved and are not displayed due to the

space limitation.

Table 5-3. The number of evaluated documents during query

processing on the GOV data set

Document

Numbers

W/O Term

Pair Indexes

W/ Term Pair Indexes

m = 1 m = 2 m = 3

STD 4,452,906 3,653,919 1,555,227 1,306,699

HL 3,217,435 1,128,684 583,827 211,216

STR 770,742 477,671 459,844 461,674

STD 0 109,902 114,919 123,185

HL 0 109,902 114,919 123,185

STR 0 109,902 114,919 123,185

STD 5,281 3,890 3,917 4,008

HL 4,971 3,865 3,956 3,630

STR 3,242 400 137 93

In Table 5-3, we show the total number of documents ()
(associated with the 51 two-term queries in the trec2004mixed

query set) that are evaluated on the GOV data set during query

processing, for all methods compared in the previous tables. We

also show the number of the documents () that are evaluated

in the auxiliary term pair lists and the number of documents ()

whose TP scores are fully evaluated. From Table 5-5, we can see

that although our methods need to first process the additional term

pair indexes, we evaluate much less number of documents in the

normal indexes than the methods without the term pair indexes,

which is the main reason that we can achieve faster query

processing speed than them. Interestingly, we can also see that

although using the larger term distance may lead to evaluating

more documents in the term pair indexes than using the smaller

distance, the total number of documents evaluated by them is

much smaller. Therefore, our method using the larger term

distance can achieve the faster speed of query processing than that

using the smaller term distance. In addition, we observe from

Table 5-3 that using our term pair indexes can also help to save

the number of full evaluations on TP scores (i.e., the value of)

due to the reasons discussed in Section 4. The similar

experimental results can also be achieved from the ClueWeb09

data sets and are not shown here due to the space limitation.

We now show the experimental results for the impacts on the

query efficiency of using various parameter values in our ranking

functions. Recall that in the basic form of our ranking function

(formula (2.1)), there are three parameters , , and , specifying

the weights of the SR, IR and TP scores respectively. The higher

weight for a certain kind of score implies the kind of scores may

have a greater impact on the overall document score than other

kinds of scores. We note that the SR score is independent of the

terms, while both the IR and TP scores depend on the terms and

are often correlated with each other (we also find such correlation

between them through our experiments). Therefore, we slightly

changed the formula (2.1) such that , where k is

parameter achieved from our experiments and still
 . We are going to show the experimental results in terms of

either various values of or various values of the rate / . First,

we compare in Table 5-4 the query processing time (ms/query) on

the ClueWeb09 data set (with the STR indexes), using our

methods and the methods without the term pair indexes (w/o TPI),

in terms of different values of and a fixed value of .

From Table 5-4, we can achieve the following observations: First,

our methods with term pair indexes can consistently achieve much

faster query processing than the methods without them for various

values for the weights of TP scores (we can also achieve such an

observation in Table 5-5 that will be explained soon). Second, our

methods using a larger distance can achieve better performance

with the increasing of the weights of TP scores. Similar

observations can also be achieved from the experimental results

on the GOV data set and are not shown here due to space

limitation.

Table 5-4. Query processing time on ClueWeb09 (STR

indexes), for the various values of and a fixed

W/O Term

Pair Indexes

W/ Term Pair Indexes

m= 1 m= 2 m = 3

0 145 137. 129 125

0.25 147 118 109 106

0.5 147 116 105 101

1 147 109 100 92

2 144 100 87 85

4 141 94 85 80

Table 5-5 . Query processing time on the ClueWeb09 data set

(STR indexes), for the various values of

W/O Term

Pair Indexes

W/ Term Pair Indexes

m= 1 m= 2 m = 3

0.25 154 100 90 85

0.5 155 108 98 91

1 147 109 100 92

2 148 112 102 98

4 144 110 105 99

We also compare in Table 5-5 the query processing time on the

ClueWeb09 data set (with the STR indexes) in terms of different

rates of the weight for the TAU (title, anchor and URL) fields and

that for the body field (i.e.). From Table 5-5, we can

see that when the TAU fields dominate the overall scores, we can

achieve faster early termination since the indexes for the TAU

fields are always evaluated earlier than those for the body field.

Table 5-6. The index size of the term pair indexes that are

only associated with the trec2009mq query set on the

ClueWeb09 data set, and the total Index size per machine

Index Type
Index-size for

trec2009mq

Total Index-size Per

machine

m=1 m<=2 m<=3 m=1 m<=2 m<=3

Normal Indexes

(STD, HL, or STR)
18 GB 60 GB

Term-

Pair

Index

W/O

Optimization

2.27
GB

3.25
GB

3.93
GB

>0.5
TB

>1.0
TB

>1.5
TB

With

Optimization

410

MB

503

MB

573

MB

41.8

GB

75.1

GB

104

GB

Finally, we compare the index size of normal indexes and our

term pair indexes for the ClueWeb09 data set in Table 5-6. We

first show in the middle column the index size only for the queries

in the trec2009mq query set. This is a rough measure of the

amount of additional data per query that has to be transferred from

the disk to the memory [32] when employing term-pair indexes.

We then show the index size per machine for the whole

ClueWeb09 data set. We show the index size for the term pair

indexes with and without the optimization (the index reduction

techniques) discussed in Subsection 4.4. From the table, we can

see that, the size of the term pair indexes is greatly reduced using

our methods. We note that the index sizes in both the above tables

can be further reduced by applying better compression methods

[32,33]. In addition, if we also take into consideration of the

caching techniques, large proportion of disk traffic can be avoided

and therefore the overall good query efficiency can still be

achieved.

6. CONCLUSION AND FUTURE WORK
In this paper, we have studied early termination techniques for the

proximity-aware retrieval models on large-scale data sets. We

proposed a new index which essentially offers the current search

engines an additional component (term pair indexes) that can

improve the query efficiency greatly without changing the original

inverted indexes. Our experimental results show that our methods

can significantly improve query efficiency especially for the

proximity-aware retrieval models.

There are still several interesting open problems. First, besides the

simple method we mentioned in Subsection 4.3 to deal with

multiple-term queries, we are currently studying other methods

for such queries. There are two intuitive methods that might be

used to extend our methods for the multiple-term queries: one is

to directly build the additional multiple-term indexes instead of

the pair indexes, while the other is to first decompose the

multiple-term query into a set of two-term queries and then

combine the results of those two-term queries. However, there are

lots of details to be taken care of for them. For example, the

former method may increase the extra index size greatly while the

second method may not be directly suitable to a proximity-aware

retrieval system unless we allow random lookups within the

resulting lists of all two-term queries. In addition, it is interesting

to study how to integrate the more optimal index compression

methods to decrease the index sizes, e.g., PForDelta [33] which

has been shown to be efficient in both compression size and

decompression speed. It will also be interesting to see if we

should reorganize the extended indexes themselves such that the

early termination inside them is. Finally, we want to study the

impacts on our methods of other factors, such as query features,

caching policies and user feedbacks.

7. REFERENCES
[1] V. Anh, O. de Kretser, and A. Moffat. Vector-space ranking

with effective early termination. In Proc. of the 24th Annual

SIGIR Conf. on Research and Development in Information

Retrieval (SIGIR’01), 2001.

[2] V. Anh and A. Moffat. Pruned query evaluation using pre-

computed impact scores. In Proc. of the 29th Annual SIGIR

Conf. on Research and Development in Information

Retrieval (SIGIR’06), 2006.

[3] D. Bahle, H. E. Williams, and J. Zobel. Efficient phrase

querying with an auxiliary index, In Proc. of the 25th Annual

SIGIR Conf. on Research and Development in Information

Retrieval (SIGIR’02), New York, NY, USA,2002.

[4] S. Brin and L. Page. The anatomy of a large-scale

hypertextual web search engine. In Proc. of the 7th Intl. Conf.

on World Wide Web (WWW’98), 1998.

[5] A. Broder, D. Carmel, M. Herscovici, A. Soffer, and J. Zien.

Efficient query evaluation using a two-level retrieval process.

In Proc. of the 12th Conf. on Information and Knowledge

Management (CIKM’03), Nov 2003.

[6] S. Büttcher and C. Clarke. A document-centric approach to

static index pruning in text retrieval systems. In Proc. of the

15th ACM Intl. Conf. on Information and Knowledge

Management (CIKM’06), 2006.

[7] S. Buttcher and C. Clake. Efficiency vs. effectiveness in

terabyte-scale information retrieval. In Proc. of the 14th Text

Retrieval Conference (TREC’05), 2005.

[8] S. Buttcher and C. Clarke, B. Lushman. Term proximity

scoring for ad-hoc retrieval on very large text collections. In

SIGIR’2006.

[9] Carnegie Mellon University, The ClueWeb09 Data set, 2009,

http://boston.lti.cs.cmu.edu/Data/clueweb09/

[10] R. Fagin, A. Lotem, and M. Naor. Optimal Aggregation

Algorithms for Middleware. JCSS, 66(4):614–656, 2003.

[11] R. Fagin. Combining fuzzy information from multiple

systems. JCSS, 58(1):83–99, 1999.

[12] R. Fagin. Combining fuzzy information: an overview.

SIGMOD Rec., 31(2):109-118, 2002.

[13] U. Güntzer, W. Balke, and W. Kiebling. Optimizing multi-

feature queries for image databases. In Proc. of the 26th Intl.

Conf. on Very Large Data Bases (VLDB’00), pages 419–428,

2000.

[14] M. Kaszkiel, J. Zobel, and R. Sacks-Davis. Efficient passage

ranking for document databases. ACM Transactions on

Information Systems, 17(4):406–439, Oct. 1999.

[15] O. Kretser, A. Moffat. Effective document presentation with

a locality-based similarity heuristic. In Proc. of the 22th

Annual SIGIR Conf. on Research and Development in

Information Retrieval, 1999

[16] R.Kumar, K. Punera, T. Suel and S. Vassilvitskii, Top-k

aggregation using intersections of ranked inputs, In Proc. of

the Second ACM Intl. Conf. on Web Search and Data

Mining, 2009

[17] X. Long and T. Suel. Optimized query execution in large

search engines with global page ordering. In Proc. of the 29th

Intl. Conf. on Very Large Data Bases, September 2003.

[18] X. Long and T. Suel. Three-level caching for efficient query

processing in large web search engines. In Proc. of the 14th

Intl. Conf. on World Wide Web, pages 257–266, 2005

[19] A. Moffat and J. Zobel. Fast ranking in limited space. In Proc.

of the 10th IEEE Intl. Conf. on Data Engineering. Houston,

TX, February 1994.

[20] E. de Moura et al. Improving web search efficiency via a

locality based static pruning method. In Proc. of the 14th Intl.

Conf. on World Wide Web, pages 235–244, 2005.

[21] M. Persin, J. Zobel, and R. Sacks-Davis. Filtered document

retrieval with frequency-sorted indexes. JASIS, 47(10):749–

764, 1996.

[22] Y. Rasolofo and J. Savoy. Term proximity scoring for

keyword-based retrieval systems. In Proc. of the 25th

European Conf. on IR Research, pages 207–218, April 2003.

[23] S. Robertson, S. Walker, S. Jones, M. Hancock-Beaulieu,

and M. Gatford. Okapi at trec-3. In Proc. of the 3rd Text

Retrieval Conference (TREC), Nov 1994.

[24] R. Schenkel, A. Broschart, S. Hwang, M. Theobald and G.

Weikum. Efficient text proximity search. In Proc. of the 14th

String Processing and Information Retrieval Symposium,

2007.

[25] G. Skobeltsyn, F. Junqueira, V. Plachouras, R. Baeza-Yates:

ResIn: a combination of results caching and index pruning

for high-performance web search engines. In Proc. of the

31st Annual SIGIR Conf. on Research and Development in

Information Retrieval, 2008.

[26] R. Song, M. Taylor, J. Wen, H. Hon, Y. Yu. Viewing term

proximity from a different perspective. vol 4956, pp. 346-

357, Springer Berlin / Heidelberg , 2008.

[27] T. Strohman and W. Croft, Efficient Document Retrieval in

Main Memory, In Proc. of the 30th Annual SIGIR Conf. on

Research and Development in Information Retrieval

[28] T. Tao and C. Zhai, An exploration of proximity measures in

information retrieval, In Proc. of the 30th Annual SIGIR

Conf. on Research and Development in Information

Retrieval.

[29] Y. Tsegay, A. Turpin, and J. Zobel. Dynamic index pruning

for effective caching. In Proc. of the ACM 16th Conf. on

Information and Knowledge Management, 2007

[30] H. Turtle and J. Flood. Query evaluation: strategies and

optimizations. Information Processing and Management,

31(6):831–850, 1995.

[31] I. Witten, A. Moffat, and T. Bell. Managing gigabytes:

compressing and indexing documents and images. Morgan

Kaufmann, second edition, 1999

[32] H. Yan, S. Ding and T. Suel. Compressing term positions in

web indexes, In Proc. of the 32nd Annual SIGIR Conf. on

Research and Development in Information Retrieval

(SIGIR’09), Boston, July, 2009

[33] H. Yan, S. Ding and T. Suel, Inverted Index Compression

and Query Processing with Optimized Document Ordering,

The 18th Intl. World Wide Web Conference (WWW’09),

Madrid, Spain, April 2009

[34] F. Zhang, S. Shi, H. Yan and J. Wen. Revisiting globally

sorted indexes for efficient document retrieval. In Proc. of

the Third ACM Intl. Conf. on Web Search and Data Mining

(WSDM’10), 2010.

[35] M. Zhu, S. Shi, M. Li, and J.-R. Wen. Effective top-K

computation in retrieving structured documents with term-

proximity Support. In Proc. of the ACM 16th Conf. on

Information and Knowledge Management (CIKM’07),

Portugal, 2007.

[36] M. Zhu, S. Shi, N. Yu, J.-R. Wen. 2008. Can phrase indexing

help to process non-phrase queries? In Proc. of the ACM

17th Conf. on Information and Knowledge Management

(CIKM’08), 2008

[37] J. Zobel and A. Moffat. 2006. Inverted files for text search

engines. ACM Computing Surveys. Vol. 38, No 2, Jul. 2006.

