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Abstract—Backup technology based on data de-duplication
has become a hot topic in nowadays. In order to get a
better performance, traditional research is mainly focused on
decreasing the disk access time. In this paper, we consider
computing complexity problem in data de-duplication system,
and try to improve system performance by reducing computing
time. We put computing tasks on commodity coprocessor to
speed up the computing process. Compared with general-
purpose processors, commodity coprocessors have lower energy
consumption and lower cost. Experimental results show that
they have equal or even better performance compared with
general-purpose processors.

Keywords-De-duplication; Commodity coprocessors; Com-
puting complexity; Low energy

I. INTRODUCTION

With the development of information technology, data has

become the foundation of all various trades and industries.

How to store the massive backup data generated in the

backup process has become a new hot spot. In the process

of full backup, incremental backup and continuous data

protection (CDP) [1]–[4], if we store the backup data directly

without any treatment, it will cause large amounts of storage

overhead. The data de-duplication technology emerged in

recent years is a good solution to backup data overhead

problem. By discarding the duplicate data produced in the

backup process, the storage overhead problem can be well

solved. For the example of Data Domain De-duplication File

System (DDFS) [5], which applies data de-duplication to the

backup data produced in a month, achieves a compression

ratio of 38.54:1, and reduces the storage overhead and

network bandwidth consumption greatly as expected.

Since there is a great performance gap between CPU

and I/O operations, for the pursuit of better performance,

traditional de-duplication systems [5], [6] focus on how to

decrease the disk access time. However, with the emergence

of new storage media such as SSD, this would no longer

be a problem. Together with the development of network

technology, which enlarges data transmission bandwidth

greatly, CPU has to carry out more and more data com-

putation tasks such as SHA-1 and compression during the

data de-duplication process, which makes CPU a potential

bottleneck. If CPU is occupied by too many highly complex

tasks, the I/O performance will be greatly decreased. There

are two possible ways to solve this problem: using more

computing units to distribute the computing tasks and using

special computing devices in individual computing unit.

Using more computing units can noticeably improve CPU

performance and has better scalability [7], [8]. However,

how to maintain data synchronization between computing

units remains a big problem. Using special computing de-

vices does not have synchronization problem, but has higher

cost and longer development cycle.

We found that putting the computing tasks on high per-

formance commodity coprocessors could be a good solution,

which avoids introducing extra synchronization problem and

has better computing performance, lower energy consump-

tion and less cost.

In this paper, we present a new continuous data protection

system based on data de-duplication: DedupCDP. Unlike

traditional de-duplication systems, we pay more attention

to reducing the computing pressure on CPU by cooperating

with coprocessors. The rest of this paper is organized as

follows: Section II surveys related work. Section III presents

the architecture of DedupCDP system. Section IV describes

how to fast de-depulication using coprocessor. In section

V, we report on various simulation experiments with real

data. Finally, we describe our conclusions and future work

in Section VI.

II. RELATED WORK

Early de-duplication storage systems, such as EMC’s

Centra Content Addressed Storage (CAS) [9], implemented

de-duplication at file level. File level de-duplication storage

systems use the fingerprint of a file to detect identical files.

Since they only implement de-duplication at file level, such

systems achieve only limited storage saving. Moreover, file

level de-duplication storage systems have poor portability.

It is natural to implement de-duplication at block level

because of the block read and write interface provided by

kernel. Venti [10] computes a cryptographic hash for each

disk contents and does data de-duplication by comparing

cryptographic hashes of blocks. Venti achieves a better

compression radio than systems implemented at file level

and can be easily ported to other operating systems. Venti

implements a large on-disk index with a cache for fast

fingerprints lookup. Since there is no locality in fingerprints,
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its index cache is ineffective. Its throughput is still limited

to less than 7MB/sec though 8 disks are used to lookup

fingerprints in parallel.

Early studies only focused on compression radio but not

on techniques to high throughput. To decrease the disk

access time, DDFS [5] uses Bloom filter [11] to detect

duplicates instead of direct fingerprints comparisons. DDFS

uses Stream-Informed Segment Layout technique to take ad-

vantage of locality. Using these techniques, DDFS achieves

100MB/sec for single-stream throughput and 210MB/sec for

multi-stream throughput.

The above studies have been mainly focused on compres-

sion radio and high throughput, not on CPU pressure which

can be a big bottleneck in de-duplication storage systems in

the near future. Our prototype is also implemented at the

block level like DDFS, and use commodity coprocessor to

release the CPU pressure.

III. SYSTEM ARCHITECTURE

DedupCDP is a data de-duplication CDP system based

on Logic Volume Manager version 2 (LVM2). Our sys-

tem uses SplitDownStream [12] architecture, and transfers

data via NBD device. The whole system consists of three

parts: backup client, de-duplication sever and backup server.

Backup client is the data generating center, it makes a copy

of each write request and sends it to the NBD device, and

then does the original write operation. The primary task of

de-duplication server is to filter duplicate data blocks. After

receiving backup data from the backup client, de-duplication

server performs the data de-duplication process. It discards

the duplicate data, encrypts the metadata and non-duplicate

data, then sends them to the backup server. The backup

server decrypts the backup data, then stores the metadata

and unique data separately.

Here, we detail each component of DedupCDP system

(Figure 1): backup client, de-duplication server and backup

server.

A. Backup Client

Backup client is running on the machine which requires

backup service. It consists of three main modules: user inter-

face module, backup engine module and data transmission

module.

The user interface module provides an interface between

system and user, including creation and management of

CDP volumes. Besides, this module provides access to de-

duplication server.

The most important module of the backup client is backup

engine module, which runs at the block level, and provides

CDP volume backup service. System dispatches fixed-size

write requests to the CDP volume. The backup engine

backups each data chunk which is written to the CDP

volume. The backup engine does the following tasks for

every write request to be backed up:

∙ Capture every write operation BIO to the original

volume and make a copy of it.

∙ Change the target device of the copied BIO to the data

transmission module.

∙ Insert the modified BIO to the list of Remote I/O

Request Queue.

∙ Dispatch the original write request to the original

device.

Since the backup engine module and data transmission

module are asynchronous, the backup engine only puts the

modified data into the remote I/O request queue without

waiting for it to be sent, so it can reach a very high

throughput. The data transmission module is responsible for

sending the backup data to the de-duplication server via

NBD device. Backup data are compressed before sending

to save bandwidth. Meanwhile, system can get a better

compression radio through data compression as well.

B. Deduplication Server

Deduplication server does the following tasks: receiving

data de-duplication from backup client, creating index for

duplicate data search and metadata for data recovery, and

sending the metadata and the unique data to the backup

server for storing.

As described in DDFS system, too many disk index

searches can decrease system performance. For data coming

from backup client, we use Bloom filter to do the data du-

plication check. However, Bloom filter has some probability

of false positive rate, so we have to further check whether

the data is duplicate or not. We do this by comparing the

fingerprint of the data to be stored with fingerprints stored in

system. As indicated in [11], the probability of false positive

rate can be calculated in the following formula.

(

1− (1−
1

m
)ks

)k
≈

(

1− e−
ks

m

)k
(1)

Given our assumption that hash functions are perfectly

random. In our system, the size of the Summary Vector is

80M (m = 80M ) and the number of hash functions is

6 (k = 6), the size of test data is about 4G (s = 1M ),

so the false positive rata of our system is less than 1%.

Most fingerprints have to be stored on disk since memory

is not large enough to store all the fingerprints. We store

the fingerprints using a hash table on disk for fast search.

Fingerprint cache is also organized into a hash table with

the same architecture. So when a cache miss occurs, we can

easily locate the missing fingerprint on the disk. The cost is

only one disk read operation.

Organizing fingerprints in memory and on disk consis-

tently using hash technology results in low cache miss

overhead. However, it doesn’t guarantee efficient use of

cache space. Since the fingerprints are stored in hash table

in the order of their hash values, so, when a cache miss

occurs, fingerprints with contiguous hash values are fetched
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Figure 1. DedupCDP architecture.

into cache through a disk read operation. However, users

may not access data chunks in that order. Therefore cache

may be inefficient because of bad temporal locality. So we

organize fingerprints on disks in two ways. Besides hash

organization, we also store fingerprints in a temporal order

(their arrival order) and establish a connection between the

two organizations.

Hash index: Hash index is for efficient searching. Since

fingerprints are used as keywords in disk index access

process, we store fingerprints according to their hash values.

Our system uses the first n bits of a fingerprint as its

hash value to map the fingerprint to its corresponding hash

bucket. Each bucket contains 2(160−n) fingerprints. On the

one hand, the smaller the value of n is, the larger the number

of fingerprints in each bucket, therefore, more memory is

needed to store each bucket; on the other hand, the larger

the value of n is, the less the number of fingerprints in each

bucket, the more the times of time-consuming disk index

accesses. After a series of experiments, we found that when

n is equal to 10, system can get the best performance. When

one bucket is full or is replaced, its content will be written

to disk. In this way, we keep 2n bucket lists on disk which

contain all data fingerprints stored in the system, as shown

in Figure 2.

Our system first looks up the in-memory hash table for

its duplicate copy when a new fingerprint comes. If failed,

we will turn to the corresponding disk bucket list to look for

its duplicate copy. If we found a duplicate one in either of

the two processes, the new coming fingerprint is duplicate,

otherwise it must be unique and needs to be stored.

Temporal index: Temporal locality index is for improv-

ing cache hit ratio. Our metadata is stored according to

their arriving order in this structure to take advantage of

temporal locality. In order to access temporal list efficiently,

the pointer to the location of a fingerprint in the temporal
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Figure 2. Structure of the disk index.

list is stored in its hash entry.

When we meet a duplicate data block, we can get the

location of its duplicate fingerprint in the temporal list

from its hash entry and fetch a large number of successive

fingerprints to cache (as Figure 3 shows). We can see that

only two disk read operations is induced by a cache miss.

Moreover, since fingerprints are prefetched according to

their arrival order, we will get good cache hit ratio if user

access pattern is repetitive.

In addition, we do not directly send the backup data

and metadata to the backup server in order to decrease

IO time. We temporarily put these data and metadata into

a in-memory container which we call segment. When the

segment is full, we send the data and the metadata in the

segment to the backup server all together.

In conclusion, for backup data chunks received, de-

duplication server does the following work:

1) Calculate the fingerprint of each data chunk.
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Figure 3. Fingerprint prefetching.

2) Using the Bloom filter vector to determine whether the

fingerprint is duplicate, if not, jump to step 6.

3) Search the cache to look for the duplicate fingerprint, if

exists, jump to step 7.

4) Use the first n bits of a fingerprint as its hash to map the

corresponding bucket and search for the duplicate one, if

not exists, jump to step 6.

5) According to the fingerprint record found in step 4,

locate the temporal locality index location and read 2M

fingerprints following that position to cache, then jump

to step 7.

6) Data is unique, put it into data segment.

7) Put it’s metadata to metadata segment.

8) Determine whether the data or metadata segment is full,

if full, encrypt them and send them to backup server.

C. Backup Server

Backup server is a machine with large capacity of storage,

which is used to store the backup data and metadata. When

a segment coming, Backup server does the following work:

decrypts the data received from de-duplication server, then

writes the data and metadata to disk separately.

IV. FAST DE-DUPLICATION USING COPROCESSOR

A. Computing Tasks In De-duplication

As described in section III, Deduplication server is the

heart of the DedupCDP system. Deduplication server in-

volves not only a great number of disk accesses, but also

a lot of computing tasks caused by SHA-1 calculation and

AES calculation for each data block coming from backup

client. Random disk accesses and too many computing tasks

together can bring a heavy burden to the CPU. With the use

of new type of storage devices (such as SSD), disk access

overhead will be reduced. In contrast, computing task may

become the new bottleneck. Therefore CPU’s computing

power can directly affect system throughput.

Table I
ENERGY COMSUMPTION OF DELL 2850 AND VIA

nergy consumption(W) dell 2850 VIA

max 392.57 26.547
min 236.73 18.477

As mentioned in section I, cluster can be used to solve this

problem. However, cluster also introduces some problem,

such as data synchronization problem, energy problem, cost

problem and so on. We find that it is better to solve

the computing complexity problem by putting computing

task on commodity coprocessor such as GPU, Cell and

coprocessor embedded in general-purpose CPU.

B. Accelerating Engines In VIA Platform

In our DedupCDP system, we put computing task on

VIA processor to get a better performance. VIA processor

is better than common x86 CPUs on aspect of computing

tasks for the following reasons:

∙ VIA processor has a specialized coprocessor called

PadLock. It has five accelerating engines: Random

Number Generator (RGN), Advanced Cryptography

Engine(ACE), Advanced cryptography Engine (ver-

sion)(ACE2), Hash Engine (PHE) and Montgomery

Multiplier (PMM), which cover most common com-

putations in modern storage systems and distributed

systems. PHE can accelerate SHA-1 calculations while

ACE and ACE2 can accelerate AES calculations. With

the help of acceleration engines, VIA processor per-

forms better than common x86 CPUs in SHA-1 and

AES calculating;

∙ Since computing tasks are put on the coprocessor, VIA

processor can put more effort to do the data block

fingerprints comparison work and disk index access

tasks;

∙ VIA processor’s power consumption is much lower

than common x86 CPUs used in common PC servers

(as Table I shows [13], [14]), which means that the

former requires simpler cooling equipment, smaller

space and therefore lower cost.

C. Accelerating APIs

VIA only provides a set of assembly instructions to use

accelerating engines, so we encapsulate ACE/ACE2 and

PHE instructions into two C functions: V IA−SHA1() and

V IA−AES(). Therefore, even novice programmers can

use these two engines easily. APIs for other accelerating

instructions can be defined in the similar way. In addition,

due to the good portability of C language, these APIs can

be ported to other system to do the similar work without

any change to the interfaces.



Here are the function prototype of V IA−SHA1() and

V IA−AES(), whose parameters are described in Table ??

and Table III.

void

VIA SHA1 ( long s i z e ,

char ∗ d a ta ,

unsigned i n t ∗ hash ) ;

void

VIA AES ( char ∗ so u rce ,

char ∗ d e s t ,

char ∗key ,

i n t mode ,

i n t blocknum ,

i n t k ey len ,

char ∗ i t l v e c t o r ,

i n t c r y p t ,

i n t keygn ,

i n t d i g e s t ) ;

Table II
THE PARAMETERS OF V IA

−
SHA1()

Parameter Description

long size Data size to extract digest
cℎar ∗ data Input data to be calculated digest
int ∗ ℎasℎ The output digest

Table III
THE PARAMETERS OF V IA

−
AES()

Parameter Description

cℎar ∗ source Input data to be
encrypted/decrypted

cℎar ∗ dest Output encrypted/decrypted data
cℎar ∗ key Key used in

encryption/decryption process
int mode Encryption/Decryption mode in

AES: ECB/CBC/CTR/CFB/OFB
int blocknum The number of data block

to be encrypted/decrypted
cℎar ∗ itlvector Initail block used in several

Encryption/Decryption mode
int crypt 0-encryption,

1-decryption
int keygn How the key generated

0-generated by hardware
1-loaded from memory

int digest 0-encryption,
1-digest extraction

Disk NBD

Coprocessor

Dedeplication Engine

Abstract 

computation
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CPU

Data stream

Figure 4. Deduplication in VIA platform.

D. Accelerating Engines In De-duplication

Figure 4 shows the data de-duplication process on VIA

platform. When a data stream arrives, Abstract Computation

module calculates the fingerprint of a data block with the

help of PHE, then forwards the fingerprints to Data Filter

module to do data de-duplication work. Then data block

is sent to Encryption Engine module to encrypt data on the

coprocessor. At last, the encrypted data is sent to the backup

server via NBD device. Since the coprocessor does the

computing tasks, main processor’s burden is greatly reduced.

V. EXPERIMENT RESULTS

A. Prototype Implementation

We implemented DedupCDP in the Linux platform. The

underlying OS was RedHat AS server 5 (kernel version

2.6.18-128.el5). LVM2 2.02.39, device mapper 1.02.28 and

NBD 2.9.12 were used. LZJB algorithm [15] was chosen

as the compression/decompression algorithm, SHA-1 was

chosen as the fingerprint algorithm, and AES algorithm was

chosen as the encryption/decryption algorithm.

B. Experimental Setup

We performed our experiments in two hardware envi-

ronments, “intel” and “via”. In “intel” experiments, the

backup client, de-duplication server and backup server were

deployed on three single-core 2.66GHz Intel Xeon nodes.

Each machine has 4GB of memory and a hardware RAID-

0 composed of six disks. The disks in backup client are

37GB SAS disks of 10000 rpm, while disks in de-duplication

server and backup server are 74GB disks of 15000 rpm; In

“via” experiments, the configuration is same as that in “intel”

experiments except that the de-duplication server was on

a VIA platform, whose processor is a 1.6GHz VIA Nano.

This machine has 2GB of memory and a software RAID-

0 composed of two 500GB SATA disks of 7200 rpm. All

nodes were connected by a Gigabit Ethernet.
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Figure 5. Sequential write.
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Figure 6. Random access.

C. Experimental Results

1) Storage Subsystem Baseline Test: We first test the disk

read and write performance of Intel and VIA platforms.

Figure 5 shows the sequential write performance of Intel

and VIA platforms, Figure 6 shows the random read and

write performance of Intel and VIA platforms. We can see

that VIA platform has better sequential read and write per-

formance than Intel platform, while Intel platform has higher

random read and write performance than VIA platform. The

results are expected, because VIA platform uses less new

(fast) disks.

2) Computing Subsystem Baseline Experiment: As men-

tioned above, we focus on computing complexity problem in

our de-duplication system, and commit to improving system

performance by reducing computing time. We put computing

tasks on PadLock coprocessor to speed up computing tasks.

The following three experiments test computing performance

of VIA and Intel platforms.

Figure 7 and Figure 8 shows the performance of SHA-1
and AES calculations respectively. We can see that VIA’s

computing power is far beyond Intel as we expected. We

will show that this advantage actually benefits overall system

performance in the following subsections.

As we mentioned above, backup data are compressed on
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Figure 7. SHA-1 performance.
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Figure 8. AES performance.

backup client server before sent to the deduplication server

to save bandwidth. Therefore, choose a good compression

algorithm can obviously improve system throughput. We test

two most popular compression algorithms to choose a com-

pression algorithm suitable for our system on two data sets.

The first data set, which we call “Common”, is composed

of ten files provided by www.maimucompression.com. These

files are typical common files. The second data set, which we

call “dup”, is a log file get from a running Linux system.

These files are typical files that have high repetition rate.

Figure 9 shows the running time of two algorithms on both

data sets. Figure 10 shows the Compression ratio of two

algorithms on both data sets. We can see that, for common

files, LZJB algorithm is nearly the same as quicklz algorithm

[16] in running time and compression ratio. However, for

high repetition rate files, LZJB algorithm is much better

than quicklz algorithm in both running time and compression

ratio. So we choose LZJB algorithm as our compression

algorithm.

3) Overall Performance Test: Figure 11 shows the logical

size (the amount of data from user or backup application

perspective) and the physical size (the amount of data stored

in disk) of the system over time at data backup server.

We report results in a 4.4GB data set, which consist of
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Figure 9. Compression throughput.
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Figure 10. Compression ratio.
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Figure 11. Compression ratio of dedup.

5 dump files from /var/crash directory in a Linux system.

Dump files are the records of system memory when the ker-

nel crashed. Different dump files have some repetition ratio

and can be used as input data in our system. We input these

dump files to backup client according to their generating

time to simulate duplicate data generating process.

At the end of the test, the backup server has backed

up about 410MB, and the original data size is 4.4GB,

reaching a total compression ratio of 10 : 1. Figure 12

shows the throughput of the DedupCDP system of both
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Figure 12. De-duplication throughput.

two kinds of hardware environments. In order to accurately

test the performance of data de-duplication, deduplication

server writes some information to the log after processing

every 100MB data. So we can calculate system through-

put using these information. Figure 12 shows both the

instantaneous throughput (intel and via) and the average

throughput (average-intel and average-via). We can see that

the instantaneous throughput curves have obvious peaks and

troughs. The peaks corresponding to cache hits, while the

troughs corresponding to cache misses (that induces extra

disk read operations, therefore the worse performance). We

can see that VIA platform achieves a comparable and even

better performance than Intel platform. At the end of the

test, Intel platform achieves a cumulative de-duplication

throughput of 178MB/s while VIA platform achieves a

cumulative de-duplication throughput of 192MB/s. Although

the disk performance is weak than Intel platform, VIA

platform still improve the system performance by about

10%, we can see that the computation tasks occupy a certain

proportion in De-duplication systems. This means that we

achieve a comparable performance using a lower-energy,

cheaper platform.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we studied the computing tasks in data

de-duplication system. We used VIA coprocessor called

PadLock to do the computing tasks in data de-duplication

system. We implemented a DedupCDP system and tested its

performance on Intel and VIA platforms. The experimental

results show that with the help of coprocessor, running time

of SHA-1 calculation on VIA processor is reduced to 1/8
than that on Intel CPU, while AES calculation running time

is reduced to 1/23 than that on Intel CPU. This advantage

actually benefits the overall performance. VIA platform

achieved the comparable throughput with lower energy and

cost though its main processor is far interior to Intel CPU.

Our paper provides a framework and basic techniques

to build low energy and inexpensive data de-duplication

systems. This research can be extended in several directions.



We can use other high performance coprocessors such as

GPU to fast de-duplication. We can use more VIA units

to distribute the computing tasks in order to get a better

performance as well.
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