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ABSTRACT
Large-scale search engines need to answer thousands of queries
per second over billions of documents, which is typically done by
querying a large inverted index. Many highly optimized integer en-
coding techniques are applied to compress the inverted index and
reduce the query processing time. In this paper, we propose a new
grammar-based inverted index compression scheme, which can im-
prove the performance of both index compression and query pro-
cessing.

Our approach identifies patterns (common subsequences of do-
cIDs) among different posting lists and generates a context-free
grammar to succinctly represent the inverted index. To further opti-
mize the compression performance, we carefully redesign the index
structure. Experiments show a reduction up to 8.8% in space usage
while decompression is up to 14% faster.

We also design an efficient list intersection algorithm which uti-
lizes the proposed grammar-based inverted index. We show that
our scheme can be combined with common docID reassignment
methods and encoding techniques, and yields about 14% to 27%
higher throughput for AND queries by utilizing multiple threads.

Keywords
Inverted index compression, context-free grammar, query process-
ing

1. INTRODUCTION
The most widely used data structure in current search engines

is the inverted index, which allows the operator to find documents
that contain particular terms efficiently [34]. The inverted index
of a commercial search engine typically occupies a large fraction
of total storage, so the index is ordinarily compressed. A smaller
index not only means less space is needed but also decreased trans-
mission time between the disk and main memory.
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Previous work on index compression techniques [1,2,37] mainly
focus on various integer encoding schemes that aim to compress
the identifiers of documents (docIDs, which are integers) in the
inverted index better. Since these techniques are often concerned
with compressing integer sequences whose values are small on av-
erage, their resulting compression ratios depend heavily on the way
in which docIDs are assigned [6, 28, 35].

This paper is instead dedicated to a new compression scheme
which improves the compression performance by removing the du-
plicate data before encoding. We note that duplicate data is dom-
inant in the inverted index, with different posting lists containing
common subsequences of docIDs, which we call patterns. We de-
vise an algorithm called PISEQUENTIAL (Pattern Identification Sequen-
tially) to identify patterns in the inverted index. Like other applica-
tions of the grammar-based method in compressing non-text data,
it is difficult to obtain satisfactory compression ratio and decom-
pression speed if we encode the generated grammar directly. To
improve compression performance, we design a partitioned index
structure. Besides compressing the inverted index, common pat-
terns can also be utilized to improve the efficiency of query pro-
cessing by eliminating unnecessary docID comparison operations.
For AND queries, we propose an efficient intersection algorithm for
the grammar-based inverted index, employing document reordering
methods and run-length encoding. Moreover, the proposed index
structure also supports OR and WAND [7] query processing.

2. PRELIMINARIES

2.1 Inverted Index and Compression
The inverted index is a simple yet powerful data structure used in

search engines. Given a collection ofN documents, each document
will be identified by a unique docID from 1 toN . An inverted index
consists of many posting lists. Each posting list corresponds to a
unique term and contains all documents where this term occurs in
the collection. For a term t, the posting list l(t) typically has the
structure

〈d1, d2, d3, . . . , dft〉

where ft is the number of documents that contain t, and di is the
docID of the i-th document containing t. Since the docIDs of
a posting list are generally stored in an ascending order, modern
search engines usually take differences between adjacent docIDs to
convert l(t) into a sequence of d-gaps l′(t)

〈d1, d2 − d1, d3 − d2, . . . , dft − dft−1〉

and then compress l′(t) instead of l(t).
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To skip unnecessary subregions when processing queries, post-
ing lists are often split into blocks of, say, 128 d-gaps each, so that
only the blocks that are relevant to a query need to be accessed.
Although we have to store a mapping table for fast block locating,
the extra space occupied by it is much smaller than that used by the
inverted index itself.

In the context of a search engine, inverted index compression
(encoding) is usually infrequent compared to decompression (de-
coding), which must be performed for every uncached query. As
grammar-based compressors often need a high amount of memory
and time to run, this paper not only focuses on decompression per-
formance but also compression performance. We not only consider
the compression and decompression algorithms of the docIDs, but
also how to store other pertinent information needed by processing
scored queries in grammar-based index, such as term frequency.

2.2 Query Processing
For a given query, which is interpreted as a set of terms, the

common query operations are conjunctive queries and disjunctive
queries. Conjunctive (AND) queries are used to identify the subset
of documents which contain all search terms. Disjunctive (OR)
queries retrieve the documents which contain at least one term in
the query. In most scenarios, each result document of one query
should be associated with a relevance score. The score indicates
the relevance between the query and the document. Most search
engines use the k highest scored documents as the final retrieval
result. One of the most popular relevance ranking methods is BM25
[26], which is used in our experiments.

To illustrate, assume the query “2016 Summer Olympics" is made.
The search engine will find the posting lists l1, l2 and l3 for the
three terms “2016", “Summer" and “Olympics", respectively, which
may look like

l1 = 〈1, 2, 3, 14, 20, 21, 39, 40, 49, 51, 55〉,
l2 = 〈1, 2, 3, 9, 10, 11, 14, 21, 39, 40, 49, 55〉 and
l3 = 〈1, 2, 3, 14, 16, 39, 49, 53, 55〉.

If the query above is processed as one conjunctive query, the inter-
section algorithm returns

l1 ∩ l2 ∩ l3 = 〈1, 2, 3, 14, 39, 49, 55〉

and the disjunctive algorithm returns

l1 ∪ l2 ∪ l3 = 〈1, 2, 3, 9, 10, 11, 14, 16, 20, 21, 39, 40, 49, 51, 53, 55〉.

Two basic techniques for traversing posting lists are Document-
At-A-Time (DAAT) and Term-At-A-Time (TAAT) [8]. DAAT main-
tains a pointer to the “current" posting for each list, and moves the
pointers forward in parallel as the query is being processed. TAAT
traverses posting lists one by one, and uses a temporary data struc-
ture to keep track of the current candidates. In our experiments, we
use TAAT for Boolean conjunctive queries and disjunctive queries,
while for WAND queries we use DAAT.

2.3 Grammar-based Compression
A context-free grammar G is a quadruple (VT , VN , S, P ) where

VT is a finite alphabet whose elements are called terminals, VN is
the set of non-terminals, and S is a special non-terminal called the
start symbol. In general, the word symbol refers to any terminal or
non-terminal. The last component P is a set of production rules of
the form A → α, where A is a non-terminal and α is a string of
symbols referred to as the definition of A.

A production rule A → α can be rewritten to a string u, by
iteratively replacing each non-terminal by its definition until only

terminals remain. The set of strings derived from the start symbol
is denoted by L(G). A grammar G is admissible if |L(G)| = 1
and for each non-terminal A, there is exactly one production rule
A → α defined in P . Since we use a grammar G to represent
and compress a unique inverted index, this paper only considers
admissible grammars. Define |G| as the total length of strings on
the right hand sides of all production rules.

The central idea behind grammar-based compression is to use a
context-free grammar to represent the input and reduce repeating
patterns captured. For example, the string “abaababa” could be
represented by the grammar

({a, b} , {Q,L, S} , S, {Q→ aba, L→ Qab, S → LQ}).

After inferring a grammar that represents the input string, these
methods [17, 18, 21, 36] often convert the grammar to a symbol
stream, and then transform it into a bit stream by an entropy en-
coder, which affects the final size of the compressed file. A decoder
simply proceeds backwards.

3. RELATED WORK

3.1 Inverted Index Compression
Inverted index compression aims not only to reduce the space

consumption of index files, but also to support efficient query pro-
cessing. As posting lists in the inverted index are usually repre-
sented as strictly increasing sequences of integers (i.e., docIDs) to-
gether with term’s frequency, search engines utilize mathematical
encoding methods to compress these lists. Since many mathemati-
cal encoding methods aim to use fewer bytes (or bits) to represent
the strictly monotone sequences, delta encoding has been widely
used to achieve a high level of compression. Most previous work on
index compression usually assumes that the posting lists are turned
into d-gap lists and mainly focuses on encoding method.

Since topics related to compressing integer sequences have been
studied several decades, many solutions have been proposed for
different trade-offs between compression ratio and decompression
speed, while both aspects are important for inverted index compres-
sion. In this paper, however, we just limit our discussion to several
established integer encoding techniques suitable for this problem.
VByte [33] encodes an integer using a variable number of bytes,
where each byte consists of one status bit and 7 data bits. The
status bit indicates whether the current byte is the last one in the
representation of the integer or not. VByte does not achieve a good
compression ratio, because it is unsuitable for compressing small
integers. But it allows for fast decoding as the encoding is byte-
aligned, and is thus used in many systems. Stepanov et al. [32]
present a variant coding method based on VByte (called Varint-
G8IU) which exploits SIMD instructions in modern CPU for faster
decoding.

In addition, PForDelta [38] also aims at fast decompression. It
divides the list of integers into segments of length s, always divisi-
ble by 32. To encode the integers within a given segment a, it first
determines the smallest b such that most integers in a (say, 90%)
are less than 2b and thus can be stored using b bits. The remain-
ing values, called exceptions, are encoded separately. In the slot of
each exception, it maintains a pointer to the location of the next ex-
ception, forming a linked list. One popular variant of PForDelta is
OptPFD, which is introduced in [35]. Instead of setting a constant
threshold of the number of exceptions per block, OptPFD makes
the selection an optimization problem to achieve the best trade-off
between compression ratio and decoding speed.

Simple16 (S16) is also a widely used algorithm proposed in [37]
that achieves both good compression and high decompression speed.

276



Compared with Simple9 (S9) [2], since each case of S16 uses all
data bits, it achieves slightly better compression.

As most integer encoding methods require sequential decoding,
each posting list is split into blocks, where each block can be en-
coded and decoded independently. In most cases, the size of block
is fixed, e.g. 128 or 256 integers [10, 20]. Silvestri et al. [31] in-
troduce an optimal partition strategy for partitioning an integer se-
quence into blocks to get better compression ratio.

In addition to mathematical encoding methods, there are other
approaches for index compression. Beskales et al. [5] propose an
approach to map terms in a document collection to a new term
space, thereby to generate a more compact inverted index for bet-
ter compression. Giuseppe et al. [24] describe an index scheme
based on dividing posting list into chunks and compressing them
with Elias-Fano code, thereby forming a two-level index structure.
Their method takes advantage of the local statistics of the chunk
for better encoding, thus improving compression. Some works also
focus on compressed indexes used in labeled graphs [14], or com-
bined with phrase-based ranking [25], and space-time tradeoff [23].

3.2 Document Reordering
To improve inverted index compression, a number of document

reordering (docID reassignment) methods have been developed.
The key idea of this kind of approach is to actively enhance the
clustering property of posting lists so that similar documents have
close docIDs, thereby improving the performance of integer en-
coders. The approaches proposed in [6, 30] use graph structures
to represent the relationship among documents and assign docIDs
during a graph traversal. A much simpler yet effective approach
was proposed in [29], which assigns docIDs alphabetically accord-
ing to their URLs.

Recently, Arroyuelo et al. [3] proposed a reordering method based
on run-length encoding which is able to create longer runs of d-
gaps of 1 (or just 1s, for short). By representing each run with just
two values when encoding the posting lists, they showed that space
usage can be reduced. Shi et al. [27] instead achieved longer runs
of 1s by reordering according to the document frequencies of terms
in the inverted index. These two methods not only enhance the
clustering property, but also provide more runs, thereby achieving
better compression than run-length encoding. Moreover, for every
occurrence of a specific run with length l, only two instead of l val-
ues need to be stored no matter how large l is, so the two methods
actually reduce redundant storage for the multiple occurrences of a
common docID sequence.

In this paper, we present a more general and powerful pattern
identification algorithm which improves common encoding tech-
niques and reordering methods.

3.3 List Intersection
Sorted lists intersection has been studied for several decades.

There are many searching methods proposed such as linear search,
interpolation search [15] and galloping search [4]. However, as the
inverted lists are typically stored compactly by using the methods
mentioned in Section 3.1, some special algorithms are proposed
to accelerate intersection on these compact sequences. Gupta et
al. [16] achieved good asymptotic performance by introducing a
two-level data structure in which each level is itself searchable
and compressed. Culpepper et al. [13] proposed a simpler hybrid
method that can provide both compact storage and faster lists inter-
section. However, as described in Section 2.1, these methods need
to store an auxiliary index, and decompression will be much slower
than intersection when processing queries. In [3], a novel lists inter-
section algorithm was provided which reduces explicit decompres-

sion by directly performing range checking on the runs. Although
it still stores auxiliary index, as fewer docIDs need to be decoded,
it reduces the query processing time effectively.

Compared with these algorithms, the scheme presented in this
paper aims at: utilizing a grammar-based index structure to re-
duce the redundant comparison operations, and exploiting reorder-
ing methods and encoding techniques such as run-length encoding
to reduce extra overhead, e.g., random memory access overhead.

3.4 Grammar-based Compression
Grammar-based compression is an active research area with a

wide variety of applications. Nevill-Manning and Witten [21, 22]
proposed an on-line linear-time algorithm, called Sequitur, which
infers a context-free grammar to losslessly represent the input. Yang
and Kieffer [36] improved Sequitur to make it universal. Re-Pair
[18], proposed by Larsson and Moffat, is an off-line algorithm that
infers a dictionary by recursively creating the phrases that occur
most frequently. Although these methods have shown success for
many different types of data (in fact, some of them are known
to be asymptotically optimal on input strings generated by finite-
state sources), Charikar et al. [9] showed that many of the best-
known compressors can fail dramatically. A good grammar-based
compression algorithm often attempts to find the smallest possi-
ble grammar generating the input string, but a smaller grammar
does not necessarily mean a smaller compression ratio as described
in [36], as many practical issues are ignored.

Recently, Claude et al. [11] introduced a new compressed in-
verted index by using grammar-based compression for highly repet-
itive document collections. They use Re-Pair as their grammar
compressor and then compress the sequence formed by concatenat-
ing all of the d-gap lists. They also add extra information to non-
terminals that enables fast skipping over the compressed lists with-
out decompressing. According to their experiments, their meth-
ods significantly reduce the space achieved by classical compres-
sion, at the price of moderated slowdowns on word and conjunctive
queries. Moreover, they discuss some possible extensions in [12],
such as supporting ranking capabilities within their index. Instead
of the particular case of highly repetitive collections, we focus on
a more general one, in which there may not be enough repetition
to make up for the expansion that using a grammar causes. There-
fore, in addition to making/finding more common patterns among
posting lists, another important task of this paper is to reduce the
overhead by using some auxiliary methods.

4. THE PROPOSED SCHEME
The key idea of the proposed compression scheme is to identify

and remove repeating patterns among posting lists before encoding
them. In Section 4.1, we provide the pattern identification algo-
rithm. To illustrate, suppose the posting lists l1, l2, l3 described
in Section 2.2 need to be compressed. After processed by our al-
gorithm, they are represented as a grammar G that consists of the
production rules:

A→ (1, 2, 3)

B → (21, 39, 40, 49)

l1
′ → (A, 14, 20, B, 51, 55)

l2
′ → (A, 9, 10, 11, 14, B, 55)

l3
′ → (A, 14, 16, 39, 49, 53, 55)

where A and B are the identifiers of the patterns found in l1, l2, l3,
and l1′, l2′, l3′ are the reduced posting lists. The identifiers of pat-
terns and reduced posting lists together make up the set of non-
terminals. For this example, the non-terminals are {A,B, l′1, l′2, l′3}.
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Inverted Index
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Dictionary Reduced File

Pattern Rewrite Pattern Reorder

Pattern Prune List Reorganize

Encode Differences 
Between Symbols

Grammar-Based 
Inverted Index

Figure 1: Flowchart of the proposed Grammar-based Com-
pression Scheme

The remaining docIDs are terminals, which, for the above exam-
ple, are {1, 2, 3, 9, 10, 14, . . . , 55}. Since we must express dis-
tinct lists rather than a single input, this grammar has a set of
start symbols rather than a single start symbol (in the example
above, {l1′, l2′, l3′}). So we represent the grammar by a quadru-
ple G = (DI, PI ∪ RI,RI, PP ∪ RP ), where DI , PI and RI
respectively denote the identifier sets of documents, patterns and
reduced lists, and PP and RP denote the pattern and reduced list
production sets respectively. Since the repetitions are removed, the
reduced index size |G| is smaller than that of the original index size
|l1| + |l2| + |l3|. The complete compression scheme is shown in
Figure 1.

In our implementation, we have found that the overall mem-
ory usage for grammar generation is a critical problem. For the
12GB original index file we use, the process of pattern identifi-
cation would cost more than 64GB memory. To reduce memory
usage, we use a hash segmentation strategy to partition the original
index into segments, where the grammar generation on each seg-
ment is independent from others. In Section 4.2, we will give the
details of the index partition. Moreover, the generated grammar is
unsuitable for encoding directly, so we propose some approaches
to improve the compression performance. Section 4.3 introduces
how we reorganize the generated grammar.

4.1 Pattern Identification
The key to grammar-based compression is to effectively find and

remove repetitions occurring in the data. In this subsection, we
modify a widely used grammar-based compression algorithm [36],
SEQUENTIAL, to work on an inverted index, which we call PISEQUENTIAL.

The details of PISEQUENTIAL are shown in Algorithm 1. The func-
tion find_longest_prefix(li, j, PP ) finds the longest prefix of the
unprocessed portion of li beginning with li[j] that matches the ex-
pansion of some pattern production rule in PP . If found, it returns
the pattern identifier; otherwise, li[j] is returned. In Algorithm 1,
freq(p) denotes the number of times p occurs in the right-hand side
of production rules in PP ∪RP .

Algorithm 1 PISEQUENTIAL for pattern identification
Input: Inverted index I including posting lists {l1, l2, . . . , ln}
Output: A grammar G0 = (DI, PI ∪ RI,RI, PP ∪ RP ) that

represents I
1: Initialize PI , RI , PP and RP to ∅
2: for each posting list li of I do
3: Create a new empty production rule ri → ε
4: for j = 1 to |li| do . traverse the list from left to right
5: if j = 1 then
6: replace ri → ε with ri → li[1]
7: j := j + 1
8: continue
9: end if

10: s := find_longest_prefix(li, j, PP )
11: j := j + ||s||

. ||s|| is the length of pattern rule, or 1 if not found
12: If currently ri → α, set b := last_symbol(α)s and

replace ri → α with ri → αs

13: if b appears in y in some x→ y ∈ PP ∪RP then
14: Create a new pattern p→ b
15: In the production rules for ri and x, replace the oc-

currences of the subsequence b by p
16: Add p to PI and p→ b to PP
17: end if
18: end for
19: Add ri to RI and the production rule for ri to RP
20: end for
21: for each pattern p→ δ in PP do
22: if freq(p)× (|p| − 1) < |p|+ 1 then
23: Replace all occurrences of p in PP and RP by δ
24: end if
25: end for
26: Make identifiers in RI consecutive and update productions in

PP and RP

The main difference compared with SEQUENTIAL is that, PISEQUENTIAL

processes posting lists one by one (lines 2-20) to find repeating
patterns, which makes each posting list self-indexed, and separates
the dictionary of found patterns from posting lists. Another impor-
tant improvement happens after grammar generation. Since there’s
possibly upwards of millions of docIDs, most of the posting lists
are relatively sparse. Therefore, the grammar-based method will
naively generate a large number of short production rules, which
do not combine into longer ones. In order to improve compression,
PISEQUENTIAL subsequently removes some of these short production
rules to improve the compression performance (lines 21-26).

After the grammar is generated, we store a dictionary containing
the pattern productions PP and a file of the reduced posting list
productions RP . To differentiate pattern identifiers from docIDs
in posting lists, we set the most significant bit of a 32-bit word
to represent a pattern identifier and use the reset bit to represent a
docID.

4.2 Index Partition
In our implementation, we find that the corpora of bigrams (b on

line 12 in Algorithm 1) temporarily uses at least 5.3 times more
memory than the original index file, a significant constraint that
also results in poor bigram search efficiency. The reason is that we
need to keep a record of each possible bigram in the whole index
and grammar list. Consequently, we partition the original inverted
index into segments according to the most significant K bits of the
docIDs. After this, we use Algorithm 1 to generate the grammar
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on each individual segment. Although some long patterns could be
missed by this method, we reduce the overall memory usage when
generating the context-free grammar since each segment is much
smaller than the whole index. Moreover, as each segment is inde-
pendent, the memory spent by the bigrams of previous segments
can be reused. More details about index partition will be discussed
in Section 5.2.

4.3 Grammar Reorganization
To save space, we store the gaps of docIDs instead of original

values. Although there may be non-terminals in the list, we just
skip them and turn each docID into the value by subtracting from
the previous docID. If the preceding symbol is a non-terminal, the
previous docID should be the last docID in the pattern. Take the
grammarG described at the beginning of the Section 4 as an exam-
ple, the grammar will be

A→ (1, 1, 1)

B → (21, 18, 1, 9)

l1
′ → (A, 11, 6, B, 2, 4)

l2
′ → (A, 6, 1, 1, 3, B, 6)

l3
′ → (A, 11, 2, 23, 10, 4, 2).

Traditional integer encoding schemes are generally proposed on
the assumption that the gaps are distributed according to a power-
law distribution. Once the assumption does not hold, their com-
pression performance may decline sharply. Therefore, we analyze
the gap distribution of the generated grammar (G0); see Figure 2.
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Figure 2: The proportion of gaps with a given number of bits
for the original lists, the generated grammar (G0), and the reor-
ganized grammar (G2) on the GOV2 data set, of which docIDs
are assigned by URL.

Figure 2 shows a decided difference between the gap distribu-
tion of the generated grammar (G0 in Algorithm 1) and that of the
original lists (which display a power-law distribution). As a result,
it is difficult to obtain a satisfactory compression ratio by encod-
ing G0 directly. Moreover, random memory accesses caused by
pattern fetching significantly impacts decompression speed, so we
reorganize the grammar to address these issues.

Algorithm 2 rewrites each pattern production rule to a terminal
string, i.e., it eliminates hierarchies in the grammar, with the aim of
reducing the memory access overhead. It also removes all patterns
whose length is smaller than a preset threshold L. Although this
reorganization may result in larger space requirements, it avoids
many random memory accesses, and so decompression and inter-
section are faster.

For the reduced posting list, since each pattern identifier is repre-
sented by a 32-bit integer, indicated by setting the most significant

Algorithm 2 Pattern rewriting and pruning
Input: The grammar G0 = (DI, PI ∪ RI,RI, PP ∪ RP ) gen-

erated by PISEQUENTIAL and a threshold L
Output: A grammar G1 in which the patterns are rewritten and

the corresponding lists are updated
1: for each pattern p→ α in PP do
2: while α has non-terminal(s) do
3: Replace each non-terminal in α by its definition
4: end while
5: if |α| ≤ L then . remove short patterns for performance
6: Replace each occurrence of p by α in the right-hand

side of any production rule in PP ∪RP
7: Remove p→ α from PP and p from PI
8: end if
9: end for

10: Remove all unreferenced patterns from PP

bit to 1, patterns are effectively encoded as large integers, which
will result in poor compression. Algorithm 3 eliminates the indicat-
ing bit, so the integers representing pattern identifiers are smaller,
and can be stored in fewer bits. Because of this, all pattern iden-
tifiers in PP are reassigned in ascending order of their patterns
(line 1 in Algorithm 3) and consequently the pattern identifiers in
each reduced posting list remain in ascending order, which makes it
possible to store their gaps rather than the pattern identifiers them-
selves. We convert each non-terminal (except the first one) in a
production rule of a reduced posting list to its gap value, i.e., we
subtract the previous non-terminal (line 4). We store these gaps (or
non-terminal for the first element in the list) with one extra inte-
ger to indicate the offset to the next non-terminal. The extra offset
for the last non-terminal of the list is zero. For each list, we also
have to store one extra value to indicate the position of the first
non-terminal.

Algorithm 3 Pattern reordering and list reorganizing
Input: The grammar G1 = (DI, PI ∪ RI,RI, PP ∪ RP ) gen-

erated by Algorithm 2
Output: A grammar G2 = (DI, PI ∪ RI,RI, PP ′ ∪ RP ′) in

which the pattern identifiers are reassigned and the reduced
posting lists are reorganized

1: Assign {1, 2, . . . , |PP |} to all pattern identifiers in PP ac-
cording to the ascending order of their patterns

2: for each reduced posting list l→ β in RP do
3: Update non-terminals in β using new pattern identifiers
4: Transform non-terminals in β into gap lists
5: end for

After these processes, the integers to be encoded are effectively
decreased. In our running example, A and B will be respectively
assigned the pattern identifiers 1 and 2 by Algorithm 3, and the
production rules

l1
′ → (A, 11, 6, B, 2, 4)

l2
′ → (A, 6, 1, 1, 3, B, 6)

l3
′ → (A, 11, 2, 23, 10, 4, 2),

will be encoded as

l1
′′ → (1) ] ((1, 3), 11, 6, (1, 0), 2, 4)

l2
′′ → (1) ] ((1, 5), 6, 1, 1, 3, (1, 0), 6)

l3
′′ → (1) ] ((1, 0), 11, 2, 23, 10, 4, 2)

279



where patterns are replaced by the pair

(pattern identifier gap, distance to next pattern).

The pattern identifier gap is defined as the pattern identifier minus
the previous pattern identifier, except for the first pattern, when it is
equal to the pattern identifier. The distance to next pattern is set to 0
for the last pattern. We also preappend the location of the first non-
terminal, which happens to be 1 in all three cases in our example,
which we denote (1).

The gap distribution in G2 is comparable to the distribution for
the original list, as indicated in Figure 2. Moreover, experiments in-
dicate that the compression ratio can reach around 35% after trans-
forming G0 into G2. It is thus possible to use mathematical encod-
ing methods to compress reduced lists and patterns.

4.4 Query Processing on the Grammar-based
Index

In this section, we describe how we conduct processing on the
grammar-based index. We consider three query operations: AND
queries, OR queries and WAND queries. Here we describe boolean
AND queries, but the idea applies to the other operations.

In Section 4.4.1, we present the basic intersection algorithm suit-
able to our index structure. To produce more patterns among lists
involved in the same query, Section 4.4.2 introduces several doc-
ument reordering methods. To use patterns more effectively when
processing queries, in Section 4.4.3, we restrict the patterns identi-
fied by PISEQUENTIAL to common “runs” among different posting lists
rather than noncontinuous sequences.

4.4.1 Intersection Algorithm
The grammar-based index consists of not only the docIDs but

also the patterns. Therefore, we design a new intersection algo-
rithm suited to process queries on grammar-based indexes, shown
in Algorithm 4. This algorithm has the same skeleton as the algo-
rithms for plain inverted index; the key difference is the function
INTERSECT which perform intersections on two reduced posting
lists (lines 11 to 26 in Algorithm 4).

INTERSECT scans the two lists sequentially until one of them
is exhausted. For each comparison between two elements, there
are three possible scenarios: (1) If the two elements are identical,
INTERSECT appends p directly to the resulting list, whether or not
p and q are both non-terminals or terminals (docIDs). (2) If p and q
overlap and both are non-terminals, it fetches their definitions and
performs an ordinary document lists intersection. (3) Otherwise,
if one element is docID d and the other is pattern, it fetches the
pattern’s production rule from the dictionary and searches for d
within it, and then appends d to the result if found (lines 19 to 22).
The algorithm finally rewrites the pattern list to a terminal string
and merges it with the document list.

The first situation above saves many comparison operations by
placing common patterns directly in the result (i.e. both elements
are non-terminals). Profiling results show an advantage of Algo-
rithm 4 over plain lists intersection in terms of the number of com-
parison operations required. However, many random memory ac-
cesses come as a result of fetching pattern definitions, offsetting
this advantage. Consequently, we next explore how to make more
patterns and use them more effectively.

We use a “skip” strategy to avoid some unnecessary random
memory accesses. Specifically, before determining whether a do-
cID exists in a pattern, we check the next element after the pattern
first. For example, on line 20 in Algorithm 4 where p is the pattern
and q is the docID, the next element n is li[m + 1]. If n is also a
docID and q is not smaller than n, we skip p and compare q with

Algorithm 4 List Intersection on a grammar-based index
Input: A u-term query (t1, t2, . . . , tu) and the compressed gram-

mar G that represents inverted index I
Output: The intersection results ∩1≤i≤ul(ti)
1: Load the dictionary into the memory
2: Re-label the u lists so that |l(t1)| ≤ |l(t2)| ≤ · · · ≤ |l(tu)|
3: l = l(t1) . l keeps track of the current candidates
4: i := 2
5: while i ≤ k do . intersect other lists l(ti) with l one by one
6: l′ = INTERSECT(l, l(ti))
7: i := i+ 1
8: l = l′

9: end while
10: return l

11: procedure INTERSECT(li, lj)
12: Create an empty set r = ∅
13: for m = 1 to |li| and n = 1 to |lj | do
14: p := li[m] and q := lj [n]
15: if p = q then
16: Add p to r
17: else if both p and q are non-terminals then
18: Intersect production rules of p and q, then add re-

sult(s) to r
19: else if p is a non-terminal then
20: Search for q in p, then add q to r if found
21: else if q is a non-terminal then
22: Search for p in q, then add p to r if found
23: end if
24: end for
25: Return r
26: end procedure

elements after p. Otherwise, we will fetch the production rule for p
and search for q in it. Experiments indicate this skip strategy can re-
duce random memory accesses by approximately 20%. Moreover,
we utilize the prefetch CPU instruction to read production rules to
hide the latency caused by cache misses, which achieves about a
13% speedup in AND query processing.

4.4.2 Pre-grammar Document Reordering
We test two existing document reordering methods and design a

new method to produce more and longer common patterns among
posting lists, especially lists involved in the same query.

Intersection-Based DocID Assignment (IBDA) [3] This aims
to generate longer runs in the inverted index. For a given inverted
index L = {l1, l2, . . . , ln}, it computes l1 ∩ l2, l1 ∩ l2 ∩ l3, . . .,
until |l1∩l2∩· · ·∩lj+1| < M , whereM is a preset threshold. Then
it assigns consecutive identifiers to the documents in l1 ∩ · · · ∩ lj ,
and then to those in l1∩· · ·∩lj−1\lj , and so on, until to l1∩l2\l3.
Then it removes the documents with reassigned docIDs from L,
and repeats these steps until L = ∅. A related method was also
described in [3], in which the co-occurrence of term pairs mined
from the query log is used to determine the processing order of the
lists, which we use for the experiments in this paper.

Term sorting-based(TRM) [27] This reordering method aims
to produce smaller d-gaps. It first sorts posting lists in the descend-
ing order of their length, then sorts docIDs in the order in which
they appear in the lists.

Frequency-Based Reordering (FBR) Grammar-based compres-
sion will benefit from highly repetitive sequences in the dataset, re-
sulting in long duplicated sequences and the frequencies of them
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are higher. So we use a two-phase reordering method. After the
index partition described in Section 4.2, we reorder the docIDs in-
side each segment in descending order of their frequency (within
all posting lists in the same segment). Since the most frequent doc-
uments are moved to the head in each posting list, we then partition
these docIDs into groups, with the number of docIDs are the same
for each group (say 128 elements). In each group, we use the URL
reordering method to assign final consecutive docID.

4.4.3 Run-length-based Intersection Algorithm
The document reordering methods result in more and longer pat-

terns. However, pattern fetching introduces a large number of ran-
dom memory accesses which significantly impacts query process-
ing performance. To address this issue, we modify PISEQUENTIAL so
that it only inserts new patterns that form a run. Since each run can
be represented precisely by the minimum and the maximum do-
cIDs, the output is significantly reduced. When we check whether
one docID exists in the pattern, we only need to perform two com-
parison operations, i.e. to check if the docID is in the range of the
pattern, and no more random memory accesses are required.

While this run-based grammar index structure may have a slight
impact on the compression ratio, it improves query processing per-
formance significantly. The proposed grammar-based scheme ex-
ploits run-length encoding like IBDA and TRM, but it employs a
more general and powerful common pattern (run) identification al-
gorithm.

5. EXPERIMENTS

5.1 Experimental Setup
To compare the various index schemes, we make use of full

web documents from the GOV2 collection as our document cor-
pus, which results in an index of approximately 12 GB without
positional information and frequencies. For scored queries, there
is another index of about 12 GB storing frequency information and
one file about 97MB storing document sizes. The docIDs are as-
signed according to the lexicographic order of their URLs [29]. We
choose the TREC 2009 Efficiency query set (T09), which contains
32,244 queries, as our test query set.

We carried out all experiments on a PC server with a hexa-core
2.60 GHz Intel(R) Xeon(R) CPU and 64 GB of memory, running
the CentOS 6.5. All algorithms are implemented in C++ and are
compiled with g++ version 4.8.2, with optimization flag -O3. In our
experiments, we use the IBDA, TRM and FBR document reorder-
ing methods. We implement IBDA and TRM based on their de-
scriptions in their corresponding papers. For the integer encoders,
we use the highly-efficient implementations from [19]. In our im-
plementation, we use OptPFD to compress the dictionary, the re-
duced file and term frequency information. We encode each re-
duced list in blocks of 128 elements (docID or non-terminal) and
also store a separate array about the maximum docID of each block
for fast skipping during list intersection. The term frequencies of
postings are stored apart from grammar index and kept the same
order to posting lists. For each non-terminal in the reduced list, we
also store the offset to the next frequency in the term frquency list,
since there are more than one posting in the pattern.

We make use of the state-of-art indexes from [24] as our base-
lines. We also use the code made available by the authors of [11]
to compare our method with RePair-Skip. We find that RePair-
Skip get worse results than our methods and baselines. Due to
limited space, we ignore the results of RePair-Skip here. To vali-
date grammar-based indexes against the partitioned Elias-Fano and
block-based indexes, we compared the construction consumption

during index building, compression ratio and query process time
between our methods and baselines. We refer to the grammar-
based index, Elias-Fano index and block-based index as GM, EF
and BLK, respectively. GM is the index generated by PISEQUENTIAL,
while GM-Run is a modified version of GM which only identifies
the patterns which form a run. At the beginning of experiments of
decompression and query processing, all indexes are loaded into
the memory.

5.2 Memory Usage in Pattern Identification
Before comparing the performance of the different indexes, we

first investigate the memory space spent on pattern identification,
of which the cost is larger than other procedures when compressing
the inverted index with our methods.

As described in Section 4.2, we find that memory usage for pat-
tern identification is temporarily at least 5.3 times more than origi-
nal index file. Consequently, we partition the inverted index before
grammar generation. According to the most significant K bits of
the docID, we split each posting list into 2K parts (some parts may
be empty), and PISEQUENTIAL will be executed on each part across
different lists individually. The memory usage and space usage as
K varies is shown in Figure 3.

As we would expect, as K increases, the peak value of memory
usage for each segment (solid lines) becomes smaller as fewer tem-
porary data structures need to be maintained by PISEQUENTIAL. The
peak memory usage is approximately 11.5 GB for GM and 12.8
GB for GM-Run when K is 3. When K is less than 3, the memory
consumption for temporary data structures exceeds 64GB, which is
the physical memory capacity in our server.
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Figure 3: Peak memory usage (solid) and space usage (dashed)
of GM and GM-Run.

We also find that the space usage (dashed lines in Figure 3) grows
with K on both GM and GM-Run, implying the proposed method
remains functional for larger indexes. As the value of K increases,
more long candidate patterns have been cut off since the origin
posting list becomes shorter for each segment. Based on these ob-
servation, we select K = 3 for our grammar-based index.

5.3 Compression and Decompression

5.3.1 Space usage
In Table 1 we list the compression ratio in two different formats:

(a) the average number of bits required for each docID in the com-
pressed lists, and (b) the overall space in gigabytes (without fre-
quencies).
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Table 1: Space usage of the index schemes for different docu-
ment reordering methods

Index Scheme Space (bits/int) Space (GB)

URL FBR IBDA TRM URL FBR IBDA TRM

EF Uniform 5.41 4.98 6.13 5.83 2.19 1.89 2.29 2.21
EF ε-optimal 4.77 4.38 5.98 5.68 1.83 1.66 2.24 2.13

BLK OptPFD 5.21 4.63 6.43 5.93 1.98 1.74 2.43 2.25
BLK VByte 10.32 9.83 11.24 10.20 4.12 3.81 4.47 4.01

GM 4.35 4.01 5.82 5.31 1.78 1.58 2.20 1.99
GM-Run 4.41 4.33 5.97 5.61 1.79 1.64 2.23 2.12

We make the following observations:

• Both GM and GM-Run outperform the baselines on com-
pression. The improvement over the best baseline EF ε-
optimal is up to 8.8%.

• The compression ratio of GM is slightly better than GM-Run.
This is because GM-Run only contains the run patterns in its
dictionary while some other patterns are not extracted from
the inverted index.

• All schemes benefited from the use of the FBR reordering
method, and the best compression ratio overall is achieved
by GM with FBR reordering.

5.3.2 Decompression speed
To test the decompression speed, we decompress all inverted lists

accessed by the queries from T09. In Table 2, we show the average
decompression speed for the different integer encoding methods in
millions of docIDs per second. Since there is no obvious decoding
operation for EF indexes, we omit the decompression speed of EF
indexes in Table 2.

Table 2: Decompression speed for different index schemes and
document reordering methods

Index Scheme Speed (×106 docs/sec)

URL FBR IBDA TRM

BLK OptPFD 369 365 383 384
BLK VByte 498 491 492 520

GM 361 374 400 402
GM-Run 504 519 550 593

The main observations are the following:

• All index schemes achieve their best improvement on docIDs
assigned by TRM, while the lowest speeds are on reordering
by FBR. In all reordering methods, GM-Run achieves a bet-
ter decompression speed than baselines. It yields an enhance-
ment of 1.2% to 14% over the best baseline BLK VByte.

• The decompression speed of GM-Run outperforms GM in
all document reordering methods. Unlike for GM-Run, for
GM we compress the dictionary with OptPFD, and patterns
in runs decompress much faster. The improvement over GM
is about 38% to 48%.

• The TRM reordering method can generate longer runs in
posting lists, which results in a better decompression speed
for GM-Run. More longer patterns also result in fewer ran-
dom memory accesses caused by pattern fetching during de-
compression.

From Tables 1 and 2, we can see that an index reordered by
FBR can generate better a grammar-based index in terms of com-
pression. For better decompression speed, however, the IBDA and
TRM reordering methods perform better. We can conclude that the
proposed grammar transformation is able to improve compression
ratio by up to 8.8% and decompression speed by up to 14% vs. the
baselines.

5.4 Query Processing Performance
We now focus on testing the efficiency of our methods for query

processing. Since modern search engines typically utilize multi-
core CPUs to boost processing, we not only conduct experiments
on a single thread, but also test multi-threaded performance. For
multi-threaded experiments, we report both average query process-
ing time and throughput. Higher throughput implies that we can
use less hardware resources to support the same number of users
or use the same hardware resources to serve more users. For each
index scheme, we batch every thousand queries for one new thread
to process, while the maximum number of threads is set to 12. The
average times here are measured by running the same query set 3
times.

In Table 3(a), we compare the average processing time for AND
query processing. We see that grammar indexes underperform both
Elias-Fano indexes and block-based indexes with a single thread.
The difference between GM and EF ε-optimal is about 12% to
26%, while for GM-Run the difference is approximately 1.7% to
10%. Since a grammar index is divided into two parts in the main
memory, frequent cache misses on random memory accesses oc-
cur during list intersection, which causes the worse performance
compared to the baselines. In contrast, the speedups for grammar
indexes with multiple threads are better. In this setting, GM un-
derperforms EF ε-optimal by 4.3% to 7.5%, and GM-Run even
outperforms ε-optimal about 3.3% to 15%. The reason is that the
cache miss problem for grammar indexes is effectively “hidden”
when utilizing multiple threads. When a cache miss occurs in one
thread, the CPU instead executes another thread until the cache
miss is resolved in the original thread. Therefore, the benefit of
GM-Run, i.e., reducing the number of comparisons of docIDs dur-
ing list intersection (e.g., the difference is about 45.7% over EF
ε-optimal with index of which docIDs assigned by TRM), results
in less query processing time.

The throughput of GM for AND query processing is closer to the
baselines, while the throughput for GM-Run is much better than the
EF baselines. For GM, the deficiency versus EF ε-optimal can be
up to 7.5%, although GM slightly outperforms EF ε-optimal when
docIDs are reassigned by TRM. The improvement of throughput
of GM over BLK OptPFD is up to 26%. GM-Run achieves better
throughput than most baselines, e.g. it outperforms EF ε-optimal by
about 14% to 27% and using TRM, it outperforms the best base-
line, BLK VByte, by over 5.9%. These observations indicate that
the proposed grammar index can achieve higher throughput than
the baselines when using multiple threads. Although the average
processing time of GM and GM-Run is worse than most base-
lines, the difference would be insignificant to an end user (typically
smaller than 1 ms).

In Tables 3(b) and 3(c), we also compare the processing time
and throughput for OR and top-10 WAND queries on the differ-
ent index schemes. These results indicate the proposed grammar
index is not best suited to OR or WAND queries in terms of both
query processing time and throughput. Unlike for AND queries,
OR and WAND queries do not benefit from identifying patterns,
which aims to reduce comparisons during query processing.
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Table 3: Average time (ms) and throughput (queries/sec) for different query operations
(a) AND queries

Index Scheme Avg. time, single thread Avg. time, multiple threads Throughput, multiple threads

URL FBR IBDA TRM URL FBR IBDA TRM URL FBR IBDA TRM

EF Uniform 4.34 3.66 3.48 3.23 0.63 0.55 0.51 0.47 980 1026 1097 1256
EF ε-optimal 3.89 3.57 3.11 3.04 0.60 0.53 0.50 0.46 1104 1262 1301 1469

BLK OptPFD 4.11 3.98 3.57 3.42 0.63 0.55 0.52 0.54 1003 1026 1039 1173
BLK VByte 2.82 2.67 2.12 1.99 0.34 0.28 0.24 0.21 1305 1485 1532 1765

GM 4.37 4.04 3.89 3.82 0.64 0.57 0.53 0.48 1021 1214 1300 1483
GM-Run 3.99 3.63 3.43 3.29 0.58 0.50 0.47 0.39 1257 1465 1493 1869

(b) OR queries

Index Scheme Avg. time, single thread Avg. time, multiple threads Throughput, multiple threads

URL FBR IBDA TRM URL FBR IBDA TRM URL FBR IBDA TRM

EF Uniform 102.2 95.4 91.1 94.3 32.0 31.6 30.8 31.2 31.9 33.9 36.5 35.0
EF ε-optimal 104.4 97.8 92.3 96.3 33.4 32.3 30.2 32.2 29.3 32.0 35.6 33.2

BLK OptPFD 101.8 95.4 88.4 98.4 31.4 29.4 23.4 30.9 30.9 33.6 41.8 33.4
BLK VByte 98.4 90.1 86.7 92.3 30.5 28.4 23.2 29.1 34.4 37.8 44.8 37.1

GM 115.9 111.4 106.3 109.8 40.4 38.3 36.9 37.4 25.2 26.9 27.7 27.4
GM-Run 109.7 103.5 97.4 99.9 36.9 35.4 33.2 34.7 27.5 28.6 30.8 29.5

(c) Top-10 WAND queries

Index Scheme Avg. time, single thread Avg. time, multiple threads Throughput, multiple threads

URL FBR IBDA TRM URL FBR IBDA TRM URL FBR IBDA TRM

EF Uniform 17.4 14.6 13.4 14.6 4.13 3.87 3.34 3.54 263 286 315 310
EF ε-optimal 16.3 12.9 11.4 13.8 3.98 3.58 3.23 3.34 270 289 330 311

BLK OptPFD 14.5 12.4 11.2 13.2 3.72 3.41 3.01 3.14 274 295 321 303
BLK VByte 11.3 9.6 9.2 9.6 3.12 2.98 2.23 2.56 326 346 448 397

GM 21.4 19.3 17.6 16.4 4.32 4.56 4.42 4.33 266 281 271 290
GM-Run 18.4 17.0 14.6 14.0 4.29 4.18 3.91 3.52 259 265 284 309

6. CONCLUSIONS AND FUTURE WORK
In this paper, we propose a new compression scheme where the

key idea is generating a context-free grammar to represent the in-
verted index succinctly and then compressing it using integer en-
coding. We also present approaches to query processing suited to
this grammar-based index scheme.

By evaluating index compression and query processing on vari-
ous index structures, the integer encoding and document reordering
methods yield better general performance on the run-based gram-
mar index structure instead of the traditional inverted index struc-
ture. On the grammar index, we obtain up to 8.8% reduction in
space usage and up to 14% acceleration in index decompression
speed, while still achieving a reasonable query processing perfor-
mance, especially high throughput with multiple threads condition.
As future work, it would be worthwhile using d-gap lists to gen-
erate grammar index, and combining grammar based compression
method with Elias-Fano coding.
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