
Parity Declustering Data Layout for Tolerating Dependent Disk Failures in

Network RAID Systems

Wang Gang, Liu Xiao-Guang and Liu Jing
Department of CS, NanKai University, Tianjin, 300071

E-mail: {wang_gang, lxgmail}@eyou.com

Abstract
In this paper, we present a new data layout – “string

parity declustering data layout”. This data layout
incorporates advantages of both orthogonal data layout [2]
and weighted parity declustering data layout. The
simulation results show that, it improves the reliability of
RAID systems (especially network RAID systems)
greatly.

1. Introduction

In recent years, the performance gap between CPU,
memory system and I/O subsystem has been widening. If
the trend continues, future improvements in CPU and
memory system performance will be wasted as computer
become increasingly I/O bound. To overcome the
impending I/O crisis, Patterson et al. have proposed
Redundant Arrays of Inexpensive Disks (RAID) [1].
Along with the rapid pace of network technology, network
storage has become more and more common in past years.
We applied parity declustering technology (originally
suggested by Muntz and Lui [3], evaluated by Holland
and Gibson [4], and more recently improved upon by
many people) to network RAID systems, and proposed a
new data layout method – “weight parity declustering data
layout” [8]. This data layout improves the failure-recovery
performance and the reliability of network RAID systems.
However, it doesn’t consider dependent disk failures that
can severely limit the reliability of network disk arrays.

Most I/O subsystems require support hardware that is
shared by multiple disks. For example, power supplies,
cabling, cooling, controllers, and computers, network
equipments (in network storage systems) are often shared
across multiple disks. A collection of multiple disks and
shared devices is called a “string” [2]. String may fail if
any of the support hardware fails, and string failures can
render many disks unavailable. Obviously, if data layout is
not designed carefully, one string failure may cause the
RAID system to fail. MTTDL of this kind of layouts is:

stringdisk

disk
RAID

MTTF
M

MTTF
MTTRNGNMTTDL

+
+

=

2
)1(

1 (1)

Namely, a M string disk array only has 1/Mth
reliability of a single string. Generally, the reliability of a
string is far less than that of a single disk (especially in
network RAID systems that use workstations or PCs as
I/O nodes, a string is a computer), thereby the reliability
of disk arrays is very poor.

To solve this problem, Gibson et. al. proposed
orthogonal organization in [2]. As shown in Fig. 1,
orthogonal disk arrays organize parity groups with no
more than one disk from each group on any one string, so
it guarantees that a single string failure can be endured as
long as no other disk or string failure occurs before the
string is repaired. Orthogonal organization sloves the
string-failure problem successfully, but it is substantially a
multiple-group RAID level 5. It has bad degraded- and
reconstruction-mode performance [4], and then impacts
the reliability. MTTDL of orthogonal organizations is:

)()1())12(/)1((
)1(/)(/1(/1

)12(1
1

)1(

2

NNGNNMTTFN
NGNGG

NN

MTTRNGN
MTTF

sdssstring

sssdRdRFF
F

dsdd

F
disk

disk

++++++
++++++

+
+++

+
+

εε
φεεαααφαα

εε
α

 (2)

where λd=1/MTTFdisk, λs=1/ MTTFstring, μd=1/ MTTRdisk,
μs=1/ MTTRstring, μdr=1/ MTTRdisk-recovery,
Ψ(g)=αRd+GNεdd+gΦεds, αF=MTTFdisk/MTTFstring,
αR=MTTRdisk/MTTRstring, αRd=MTTRdisk/MTTRdisk-recovery,
εdd=MTTRdisk/MTTFdisk, εss=MTTRstring/MTTFstring,
εsd=MTTRstring/MTTFdisk, εds=MTTRdisk/MTTFstring and

G
1

3
1

2
1

1
1

++++= Lφ .

Fig. 1 Orthogonal organization

2. String Parity Declustering Data Layout

To solve imperfections of orthogonal organization and
weighted parity declustering data layout, we proposed a
new data layout method – “string parity declustering data
layout”. By using both parity declustering and orthogonal
organization technologies in data layout optimization,
string parity declustering data layout can tolerate single
string failure, and also has good degraded- and
reconstruction-mode performance.

The new data layout optimization algorithm comes
from simulated annealing algorithm [5]. Performing
simulated annealing algorithm on simple randomized
layouts can significantly reduce the imbalance in their
reconstruction workload., then small randomized layouts
can have good reconstruction workload distribution as
well. The algorithm is simple: a randomized layout is used
as the initial layout, the basic simulated annealing move is
the swap of the positions of two units picked from the
array at random. For a data layout L, the objective

function is:

∑
≠

=
jij,i,

2
ij)(X)(

disks
SA LH (3)

Where Xij is the number of units on disk j that must be
read to reconstruct the contents of disk i. Since the mean
is fixed by the choice of the number of disks and the
length of parity stripe, this is equivalent to minimizing the
variance. Minimizing the objective function will make the
reconstruction workload distributed more evenly.

Obviously, the data layout generated by simulated
annealing algorithm doesn’t guarantee to tolerant a single
string failure, because of randomness in layout
initialization and transformation. We improved simulated
annealing algorithm by placing some constraints on layout
initialization and transformation to guarantee that no
string contains more than one unit from one parity stripe.

Firstly, the layout initialization method was
ameliorated. Let N+1 denote the number of strings, and
assume parity stripe length is equal to the number of
strings. Let G denote the number of disks per string, and
number disks from 0 to G • (N+1)-1 in row-column
sequence. Let r denote the size (number of rows) of the
layout. The new algorithm builds the initial layout as such:
distribute unit j (0~N) of stripe i (0~G-1) in each row to
disk i• (N+1)+j (disk i on string j). Obviously, this layout
is an orthogonal organization. To accelerate optimization,
the initial layout can be made more stochastic by using
permutation algorithm described in [6]. But only units
from one string (unit j of one stripe and unit j of another
stripe) can be exchanged in order to guarantee the units
from the same stripe are still on different strings.

Secondly, the layout transformation method was
improved as well. Like the initial layout randomization
described above, only units from one string can be
swapped.

According to the environment that the layout will be
used in, objective function in (3) (for local RAID) or
objective function proposed in [8] (for network RAID)
can be used in the new algorithm. We assume that the
environment is network RAID system, so the latter is
used:

∑
≠

•=
jij,i,

2
ij)(X)(

disks
ijWEIGHTED eLH (4)

Where eij denotes the cost that read a unit from disk j
when reconstruct disk i. The new algorithm is as follows:
1. initialize parameters for simulated annealing algorithm:

t, , m, n
2. build initial layout – an orthogonal layout L, as current

layout
3. do step 4-5 m times
4. generate four random numbers: u (0~r-1), d1, d2

(0~G-1) and s (0~N), swap unit u on disk
d1• (N+1)+s and unit u on disk d2• (N+1)+s, build new
layout L’

5. if HWEIGHTED(L’)<=HWEIGHTED(L) or

t
LHLH

erandom
)()('

WEIGHTEDWEIGHTED

)1,0(
−

≤ , accept L’ as

current layout (L=L’), otherwise still use L as current
layout (do nothing)

6. if HWEIGHTED(L) changed in m iterations, t = t• , goto
step 3. otherwise, if HWEIGHTED(L) hasn’t changed in
last n generations, the algorithm ends.

The convergence speed of the algorithm is fast. We
have done the experiments on the off the shelf PC, the
parameters are set as such: N+1=8, G=5, r=117, t=0.5,
=0.9, l=100 and n=10, generating a layout only need
several seconds.

3. Simulation Results

We have done the simulation to compare the
reconstruction-mode performance and the reliability of
weighted parity declustering data layout, orthogonal
organization and string parity declustering data layout. We
used RAIDframe [7] as the simulation platform. Some
parameters are described above, other parameters are: the
stripe unit size is 8KB. local/remote disk speed ratio is 3 ,
and Seagate ST32171W was select as disk model. The
workload we used comes from [4], it is based on access
statistics measured on an airline-reservation system.

Fig.2 illustrates the results. The left figure shows that,
orthogonal organization has the worst reconstruction
performance in these three data layouts because it doesn’t
benefit from parity declustering technology. And as the
workload climbs, the performance gap becomes wider. As
a result of distinguishing between local disk access time
and remote disk access time, reconstruction performance
of weighted parity declustering disk arrays is better than
that of string parity declustering disk arrays. But they are
very close. As the workload climbs, the two curves
approach each other gradually, because weighted parity

declutering data layout is comparatively closer to RAID
level 5 [8].

Using the approach proposed in [2], we got MTTDL of
string parity declustering data layout:

)()1())12(/)1((
)1(/)(/1(/1

)1(1

)1(

2

NNGNNMTTFN
NGNGG

NNGN
G

MTTRNGN
MTTF

sdssstring

sssdRdRFF
F

dsdd

F
disk

disk

++++++
++++++

+
++++

+
+

εε
φεεαααφα

α
εε

α

 (5)

Using formula (1), (2) and (5), we calculated MTTDL

0

2

4

6

8

10

200 500 800 1100 1400

User I/Os Per Second

R
e
c
o
n
s
t
r
u
c
t
i
o
n

T
i
m
e

(
h
o
u
r
)

string parity declustering

orthogonal organization

weighted parity declustering

0

50

100

150

200

250

300

350

200 500 800 1100 1400

User I/Os Per Second

M
T
T
D
L

(
1
0
0
0
0

h
o
u
r
s
)

string parity declustering

orthogonal organization

weighted parity declustering

Fig. 2 Comparing three data layouts: reconstruct time and mean time to data loss

of three data layouts. The right chart in Fig.2 shows the
results, we assume that MTTFdisk=1,000,000 hours,
MTTFstring=20,000 hours, and MTTRdisk=MTTRdisk-recovery.
Although MTTF of string is very low, the reliability of
string parity declustering disk arrays is much better than
the reliability of a single disk, and is several order of
magnitudes better than that of weighted parity
declustering disk arrays, and 5~8 times better than that of
orthogonal disk arrays. The new data layout improves data
reliability significantly.

4. Conclusion

In large disk arrays, reliability is a serious problem.
Orthogonal organization can tolerate a single string failure,
and improve data reliability greatly. Parity declustering
technology improves degraded- and reconstruction-mode
performance. We proposed a new data layout method –
string parity declustering data layout. This method
incorporates the advantages of both technologies. The
simulation results show that string parity declustering data
layout is much more reliable than other two data layouts,
it also has good degraded- and reconstruction-mode
performance.

References

1. David A. Patterson, Garth A. Gibson, Randy H. Katz. “A

Case for Redundant Arrays of Inexpensive Disks (RAID)”.

Proceedings of the 1988 ACM SIGMOD International

Conference on Management of Data. 109-116.

2. Garth A. Gibson, David A. Patterson. “Designing Disk

Arrays for High Data Reliability”. Journal of Parallel and

Distributed Computing 17(1-2), 4-27. 1993.

3. R. Muntz, J. Lui. “Performance Analysis of Disk Arrays

under Failure”'. Proceedings of the Conference on Very

Large Data Bases, pp.162-173. 1990.

4. M. Holland, G. A. Gibson, D. P. Siewiorek. “Architectures

and Algorithms for On-Line Failure Recovery In

Redundant Disk Arrays.” Journal of Distributed and

Parallel Databases. Vol. 2, No. 3. 1994

5. Eric J. Schwabe, Ian M. Sutherland, Bruce K. Holmer.

“Evaluating Approximately Balanced Parity-Declustered

Data Layouts for Disk Arrays”. Parallel Computing, vol 23,

No.4-5, pp. 501-523. 1997.

6. Donald. E. Knuth. “The art of computer programming”.

Addison-Wesley Pub. Co.. 1973.

7. W. V. Courtright II, G. A. Gibson, M. Holland J. Zelenka.

“RAIDframe: Rapid Prototyping for Disk Arrays.”

Proceedings of the 1996 ACM SIGMETRICS Conference

on Measurement and Modeling of Computer Systems, p.

268--269. 1996.

8. Wang Gang, Liu Xiaoguang, Liu Jing. “Data Layout of

Network Based RAID”. accepted by Journal of Computer

Science.

